infineon

PSOC™ Control C3 MCU

Programming specification

About this document
Scope and purpose

This document provides the information necessary to acquire the PSOC™ Control C3 MCU family. It describes
the communication protocol required for access by an external programmer, explains the acquisition algorithm,
and gives a basic description of the physical connection. Pin locations and the electrical and timing
specifications of the physical connection are not a part of this document: they can be found in the device
datasheet. The programming algorithms described in the following sections are compatible with all PSOC™
Control C3 MCUs.

Intended audience

This document is intended for anyone who wants to program PSOC™ Control C3 MCUs.

Programming specification Please read the sections "Important notice" and "Warnings" at the end of this document 002-38998 Rev. *C
www.infineon.com 2025-01-13

https://www.infineon.com

PSOC™ Control C3 MCU iﬁn eon

Programming specification

Table of contents

Table of contents

About thisdocument e 1

Tableof contents e e 2
1 IntrodUction e 5
1.1 PO MM . . e e e 5
1.2 PSOC™ Control C3 MCU family OVerviewt e et ieeee 5
2 Nonvolatilememory subsystem i i i 6
2.1 Internal flash e 6
2.1.1 DUAl banKk mMOde . .o e 7
3 HeX file . ..o e e 8
3.1 Organization of the hexfile.o e e 8
4 The protocol stack e e 9
4.1 CommMUNICAtiON INEEITaCE . ..ot e e et e 9
4.2 Program and debuginterfaceot e 9
4.2.1 DAP POWEr AOMaIN . ..ttt ettt ettt ettt et e e e e 10
4.2.2 SWD/JTAG SElECtION . ottt e e 10
4.2.3 o)Y =Y - Y7 12
5 Acquisition algorithm e 16
5.1 Constants and subroutines used in the acquisitionflow.............l 16
5.2 DAP initialization sUBrOUtINESottt it e e e 17
5.2.1 DAP_Handshake e 17
5.2.2 DA It . e ettt e 18
5.2.3 DA S AN AP .« e e i e 19
5.24 RS . ottt e e e e e e e e 20
5.3 Acquire PSOC™ Control C3 MCU ..ottt ittt ettt et e et ee e 24
5.3.1 Step 1 - check boot IDLE State. ..ot e et e 25
5.3.2 Step 2 -acquire intestmMoOdettt e e e 26
5.3.3 Step 3 - acquire PSOC™ Control C3 MCU usingvectorcatch............ ... o it 29
5.4 Unlock the access to the CPU (helperfunctions) ... 32
54.1 WaitFOrWFAMODE . . . o ettt e e et e e et e et 33
5.4.2 ACQUITEINWRAMOE . . .ottt et e e e 34
543 LoadDebuglertttt e 35
5.44 StartWRAREQUEST . . . o e e 36
5.5 Unlock the access to the CPU using the debug certificate............ 37
5.5.1 UNLOCKC PUACCESS . .ttt ettt e ettt et ettt et e et ettt eeeens 37
6 Using SROM APIs to program/eraseflash.............. i ... 38
6.1 SROM rases APl USaBe . oo vttt ittt ettt e e e et e 38
6.2 SROM Program APl USage . . oottt ettt ettt et e 38
Programming specification 2 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

Table of contents

7 Appendix A: Intelhexfileformat...... i 39
8 Appendix B: Serial wire debug (SWD) protocol i 41
9 Appendix C: Joint Test Action Group (JTAG) protocolcciiiiiinenn.... 43
10 AppendixD: Codeexample 45
10.1 Hardware-specific backend functions......... ... i e 45
10.1.1 eXterN INt ISITAG(VOIA); . oo ettt e e e 45
10.1.2 extern iNt SEtXRES(STate); . . oo oottt 45
10.1.3 extern int SetVoltage(Voltage); oo e e 45
10.1.4 extern int SWJSequence(out_bits, num_bits); ... 46
10.1.5 extern int Read/WriteDAP(reg, ap_n_dp,value);coiuiiniiii i 46
10.1.6 extern void SysSleepMs(Uint32 _tMSEC); ...ttt e e e 47
10.1.7 extern int SysGetTimeMs(Void);ovrret it i e e e 47
10.2 Constants and staticdataused in code e e 48
10.2.1 {70 011 = | 1 £ PP 48
10.2.2 StatiC data. it e e e 55
10.3 Error checking functions i e e 58
10.3.1 SUCCEEDE D . ottt ettt ettt e et e et e e e 58
10.3.2 Y = 58
10.4 DAP initialization functions i e e 59
104.1 (O =TT S el V2 = o £ 59
10.4.2 DAP _HandshaKe i i e e e 60
10.4.3)N o T 61
10.4.4 DAP_HandshakeAndInit. ..o i e et e e 62
10.5 Memory access and polling functions e e 63
10.5.1 REAAMEIM L L e e e 63
10.5.2 LA 0] =T o o 63
10.5.3 POl . .. e e 64
10.6 CPU AP L00KUD - v e e et e e e e 65
10.6.1 DA S AN AP L . e e e 65
10.7 Arm’ Core control and register access functionso 66
10.7.1 BT 1o [=] (= - 66
10.7.2 WEEC O B RO . . o o vttt ettt e e e e e 67
10.7.3 Halt O P U . .. e e e 68
10.7.4 RESUMECPU .. o e e e e 69
10.8 YA] I < 70
10.8.1 RSBt . ottt 70
10.9 ROM Boot status checkingand polling i e 72
10.9.1 CRECKIDLE . ..ttt et et e e et e e e e 72
10.10 Acquisition helper funCtionst e e 73
10.10.1 ACQUITETESEMOAE . . ottt e e e 73
10.10.2 AcquireVectorCatCh i e e 75
Programming specification 3 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

Table of contents
10.11 AcqUISITION FUNCHION ... i i e ettt e e 77
10.11.1 ACQUITE « o ettt ettt ettt et e e e e e 7
10.12 Unlocking access to the CPU, helper functions...........oo i 79
10.12.1 WaitFOrWRAMOE . . . o e e e e e 79
10.12.2 ACQUITE NI AMOE . . oottt ettt e et et e e 80
10.12.3 LoadDebUglertttt e 81
10.12.4 St W AREQUEST . . oo e e e e e 83
10.13 Unlocking access tothe CPUo it e et i e 84
10.13.1 UNIOCKCPUACCESS .« vttt et et e e e e e e 84
10.14 Flash programmingt e e e e 85
10.14.1 SROM APIS deSCriPtioN . .ottt e e e 85
10.14.2 Erase APl usage pSeudoCodeottt e e 87
10.14.3 Program APl usage pseudocode.ottt e 88
10.15 REadANAINIESECUNEottt e e e e et e 90
10.16 Reads MEM-AP register of the APv2 architecture 91
10.17 Writes MEM-AP register of the APv2 architecture........ ..o 92
RefEreNCES 93
(€71 213 T T 94
ReVISION NiStOrY e 95
Disclaimer 96
Programming specification 4 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU iﬂln eon

Programming specification

1 Introduction

1 Introduction

This document provides the information necessary to acquire the PSOC™ Control C3 MCU family. It describes
the communication protocol required for access by an external programmer, explains the acquisition algorithm,
and gives a basic description of the physical connection. Pin locations and the electrical and timing
specifications of the physical connection are not a part of this document: They can be found in the device
datasheet. The programming algorithms described in the following sections are compatible with all PSOC™
Control C3 MCUs.

1.1 Programmer

IDE

(ModusToolbox™ or HEX file USB Proarammer SWD/JTAG Silicon
supported third-party 9 (PSOC™ C3)

IDEs)

Software Middleware Hardware

»le <&
r r|‘ €

Y

Figure 1 Programmer in development environment

In the manufacturing environment, the integrated development environment (IDE) block is absent because its
main purpose is to produce a binary file (hex, elf, etc.). The programmer performs three functions:

+ Parses the binary file and extracts the necessary information

+ Interfaces with the silicon as a Serial Wire Debug (SWD) or JTAG master

+ Implements the programming algorithm by translating the data from binary file into SWD or JTAG signals
The structure of the programmer depends on its requirements. It can be software- or firmware-centric.

In a software-centric structure, the programmer’s hardware works as a bridge between the protocol (such as
USB) and SWD or JTAG. An external device (software) passes all SWD/JTAG commands to the hardware through
the protocol. The bridge is not involved in parsing the binary file and programming algorithm. This is the task of
the upper layer (software). Examples of such programmers are MiniProg4 and Segger J-Link.

A firmware-centric structure is an independent hardware design in which all the functions of the programmer
are implemented in one device, including storage for the binary file. Its main purpose is to act as a mass
programmer in manufacturing.

This document does not discuss the specific implementation of the programmer. It focuses on data flow,
algorithms, and physical interfacing.

1.2 PSOC™ Control C3 MCU family overview

The PSOC™ Control C3 MCU family is a single-CPU utilizing the Arm’ Cortex’-M33 processor core. This MCU
family supports the Arm” SWJ-DP interface for programming and debugging operations, using SWD or JTAG
protocols.

This document includes the following appendices:

« Appendix A: Intel hex file format

+ Appendix B: Serial wire debug (SWD) protocol

« Appendix C: Joint Test Action Group (JTAG) protocol
+ Appendix D: Code example

Note: JTAG for PSOC™ Control C3 is available if the respective configuration is set in the provisioning policy.

Programming specification 5 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

2 Nonvolatile memory subsystem

2 Nonvolatile memory subsystem

2.1 Internal flash

The size of the flash memory varies depending on the target. A type of the flash is NOR. A target has flash, Sflash
with secure/non-secure aliases to conform to an Arm’ TrustZone feature. Also, there are S-bus (read and write)
and C-bus (read and execute) aliases. Offsets of flash aliases are shown in Table 1. Each macro presented in a
target consists of an integer. A programmer writes one row at a time. The number of rows varies based on the
size of the flash memory. A size of a row for the PSOC™ Control C3 MCU is 512 bytes. PSOC™ Control C3 MCU does
not have user Sflash, which means that Sflash cannot be used to store user data.

Table 1 Flash banks for PSOC™ Control C3 MCU

Memory Non-secure Secure Non-secure Secure
C-bus C-bus S-bus S-bus

SFLASH 0x03400000 0x13400000 0x23400000 0x33400000

FLASH 0x02000000 0x12000000 0x22000000 0x32000000

Also, flash memory can have row and chip level protections, refresh features, and a defined implementation. A
typical flash memory structure is as shown in Figure 2.

0x000
0x200
0x400

0x1F000

Row size is 512 bytes

Flash Rows Protection Chip Level Protection

Figure 2 Typical flash memory structure

Internal flash is programmed via SROM APIs. All these functions are blocking; that is, a processor exits only
when a function is done. Pointers to necessary functions are shown in Table 2. The actual function pointer is
stored at a given address.

Programming specification 6 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

2 Nonvolatile memory subsystem

Table 2 SROM APIs for writing/erasing PSOC™ Control C3 flash memory

Address Function pointer

0x1080FFE8u cyboot_flash_write_row

0x1080FFE4u cyboot_flash_program_row

0x1080FFEOQu cyboot_flash_erase_row

Note: Ifimage to be flashed contains C-bus addresses, redirect this data to S-bus alias as it is done in official

programming tools.

2.1.1 Dual bank mode

PSOC™ Control C3 MCU has a dual bank mode feature. This feature divides both secure and non-secure flash
banks into two parts, and second part of it has an offset of 0x800000. For example, in dual bank mode, secure
flash bank is divided into:

+ bank0-0x32000000
« bank1-0x32800000

New banks are half the size of the original bank. This feature relates to both S- and C- bus, but has nothing to do
with SFlash.

To reprovision to single/dual-bank mode many times, use the Edge Protect Tools.

Programming specification 7 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

3 Hex file

3 Hex file

This chapter describes the information that the programmer must extract from the hex file to program the
PSOC™ Control C3 MCU.

3.1 Organization of the hex file

The hexadecimal (hex) file describes the nonvolatile configuration of the project. It is the data source for the
programmer.

The hex file for the PSOC™ Control C3 MCU follows the Intel hex file format. Intel’s specification is very generic
and defines only some types of records that can make up the hex file. The specification allows customizing the
format for any possible silicon architecture. The silicon vendor defines the functional meaning of the records,
which typically varies for different chip families. See Appendix A: Intel hex file format for details of the Intel hex
file format.

Programming specification 8 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

4 The protocol stack

4 The protocol stack

This chapter explains the low-level details of the communication interface. Figure 3 illustrates the stack of
protocols involved in the programming process. The programmer must implement both hardware and software
components.

Programming algorithm
(Step 1 ... Step N)

SWD or JTAG
Read/Write

Communication interface
(SWD/JTAG, hardware access
commands)

Logical SWD or JTAG
signal

Physical layer
(Signals, interfacing with chip)

Signals on the line

Figure 3 Programmer’s protocol stack

+ The programming algorithm protocol, the topmost protocol, implements the whole programming flow
in terms of logical and algorithmic steps. This protocol is implemented completely in software. Its smallest
building block is the SWD or JTAG command. The whole programming algorithm is the meaningful flow of
these blocks

+ The communication interface layer acts as a bridge between pure software and hardware
implementations. SWJ interface implements a set of lower-level (protocol-dependent) commands. It
also transforms the software representation of these commands into line signals (digital form). The SWJ
interface helps to isolate the programming algorithm from hardware specifics, which makes the algorithm
reusable

+ The physical layer is the complete hardware specification of the signals and interfacing pins and includes
drive modes, voltage levels, resistance, and other components

4.1 Communication interface

The external device (whether it is Infineon-supplied programmer and debugger or a third-party device that
supports programming and debugging) can access most internal resources through the “Program and debug”
interface provided in PSOC™ Control C3 MCU silicon. The SWD or the JTAG interface can be used as the
communication protocol between the external device and the PSOC™ Control C3 MCU.

4.2 Program and debug interface

The main purpose of PSOC™ Control C3 MCU program and debug interface is to support programming and
debugging through the JTAG or SWD interface and to provide read and write access to all memory and registers
in the system while debugging, including the Cortex’-M33 register banks when the core is running or halted.

Programming specification 9 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

4 The protocol stack

The PSOC™ Control C3 MCU silicon implements a DAP, which integrates SWJ-DP (serial wire/JTAG debug port)
and complies with the Arm” specification “Arm” debug interface architecture specification ADIv6.0 (Arm” IHI
0074D)”.

The debug physical port pins communicate with the DAP through the high-speed 1/0 matrix (HSIOM). The DAP
communicates with the Cortex’-M33 CPU using the Arm’-specified advanced high-performance bus (AHB)
interface. AHB is the system’s interconnect protocol used inside the device, which facilitates memory and
peripheral register access by the AHB master. The PSOC™ Control C3 MCU has several AHB masters, including
the Arm” CM33 CPU core and DAP. The external host can effectively take control of the entire device through the
DAP to perform programming and debugging operations.

The debug port (DP) connects to the DAP bus, which in turn connects to one of two access ports (AP), namely:

+ The CM33-AP: Located inside the CM33 core, gives access to the CM33 internal debug components. The
CM33-AP port also allows access to the rest of the system through the CM33 AHB master interfaces. This
provides the debug host the same view as an application running on the CM33 core

« The System-AP: Gives access to the rest of the system. This allows access to the system ROM table, which is
not intended to be reached any other way. The system ROM table provides the MCU ID

4.2.1 DAP power domain

Almost all the debug components are part of the active power domain. The only exception is the SWD/JTAG-DP,
which is part of the Deep-Sleep power domain. This allows the debug host to connect during Deep-Sleep mode,
while the application is 'running' or powered down. This enables infield debugging for low-power applications
in which the chip is mostly in Deep-Sleep mode.

After the debugger is connected to the chip, it must bring the chip to the active state before any operation. For
this, the SWD/JTAG-DP has a register (DP_CTL_STAT) with two power request bits. The two bits are:

+ CDBGPWRUPREQ: Requests for debug power
« CSYSPWRUPREQ: Requests for system power
These bits must remain set for the duration of the debug session.

Note: Only the two SWD pins (SWCLKTCK and SWDIOTMS) are operational during the Deep-Sleep mode -
the JTAG pins are operational only in active mode. The JTAG debug and JTAG boundary scan are not
available when the system is in Deep-Sleep mode.

4.2.2 SWD/JTAG selection

JTAG and SWD are mutually exclusive because of the Arm” SWJ-DP implementation and because they share
pins. Therefore, an external programmer/debugger must be able to switch to the required protocol. The
watcher circuit, implemented in SWJ-DP, detects a specific 16-bit select sequence on SWDIOTMS and
determines whether the JTAG or SWD interface is active. By default, JTAG operations are selected on power-on
reset and therefore, the JTAG protocol can be used from reset without sending a select sequence. The protocol
switching can only occur when the selected interface is in its reset state (test-logic-reset for JTAG and line-reset
for SWD).

To switch SWJ-DP from JTAG to SWD operation:

« Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in its
reset state. The JTAG interface detects only the 16-bit JTAG-to-SWD sequence starting from the test-logic-
reset state

Programming specification 10 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

4 The protocol stack

+ Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS: 0b0111 1001 1110 0111, most significant
bit (MSB) first. This can be represented as 0x79E7, transmitted MSB first or OXE79E, transmitted least
significant bit (LSB) first

« Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in SWD
operation before sending the select sequence, the SWD interface enters line reset state

i i i i
SWCLKTCLK % %

|
<«
>
SWDIOTMS |\ / \ / \ /

0o 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

£
pJ

|
|
|
| Atleast 50
|
|
|
|
|

| |

| | |

| Atleast50 | |

I clocks with ! clocks with !

| SWDIOTMS | JTAG-to-SWD sequence SWDIOTMS |

| HIGH | HIGH |
Figure 4 JTAG-to-SWD sequence timing

To switch SWJ-DP from SWD to JTAG operation:

+ Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current interface is in its
reset state. The SWD interface detects the 16-bit SWD-to-JTAG sequence only when it is in reset state

« Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS: 0b0011 1100 1110 0111, MSB first. This can be
represented as 0x3CE7, transmitted MSB first, or OXE73C, transmitted LSB first

« Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was already in JTAG
operation before sending the select sequence, the JTAG TAP enters the test-logic-reset state

SWDIOTMS l—ss_,‘\—/]

o o 1 1 1 1 0 0 1 1 1 0 0 1 1 1

I
pJ

|
|
|
| Atleast5
|
|
|
|
|

|
| | |
| Atleast50 | |
' clocks with ! clocks with !
| SWDIOTMS | SWD-to-JTAG sequence SWDIOTMS |
| HIGH | HIGH |
Figure 5 SWD-to-JTAG sequence timing

For a more detailed description, see the “SWD and JTAG select mechanism” section in “Arm” debug interface
architecture specification ADIv6.0”.

For information on the structure of the SWD read and write packets and their waveform on the bus, see
Appendix B: Serial wire debug (SWD) protocol. For information on the structure of the JTAG, see Appendix C:
Joint Test Action Group (JTAG) protocol.

The DAP functionally is split into two control units:
« Debug port (DP) - is responsible for the physical connection to the programmer or debugger

+ Access port (AP) - provides the interface between the DAP module and one or more debug components
(such as the Cortex’-M33 CPU)

The external programmer can access the registers of these access ports using the following bits in the SWJ
packet:

« APNDP - select access port (0 - DP, 1 - AP)
+ ADDR - 2-bit field addressing a register in the selected access port

The SWJ read/write commands are used to access these registers. They are the smallest transactions that can
appear on the SWJ bus. Table 3 shows the DAP registers that are used during programming.

Programming specification 11 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

4 The protocol stack

Table 3 DAP registers (in Arm’ notation)

Register APNDP (1 bit) Address (2-bit) |Access (R/W) | Fullname

IDCODE 0 2’b00 R Identification code register
ABORT 0 2’b00 w AP ABORT register

CTRL/STAT |0 2’b01 R/W Control/status register

SELECT 0 2’b10 W AP select register

RDBUFF 0 2’b11 R Data buffer register

CSW 1 2’b00 R/W Control status/word register (CSW)
TAR 1 2’b01 R/W Transfer address register

DRW 1 2’b11 R/W Data read/write register

For more information about these registers, see the Arm’ debug interface architecture specification ADIV6.0.

4.2.3 Physical layer

This section summarizes the hardware connection between the programmer and the PSOC™ Control C3 MCU for
programming. Figure 6 shows the generic connection between the PSOC™ Control C3 MCU and the programmer.
See Table 4 for pins/signals description.

Check the device datasheet for the part’s package pins location, electrical, and timing specifications.

Host ' TARGET
Programmer

XRES

SWCLKTCLK SWCLKTCLK

SWDIOTMS SWDIOTMS

Figure 6 Connection schematic of the programmer

Programming specification 12 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

4 The protocol stack

Table 4 Pins/signals

Pin SWD JTAG Description

Signal name Mandatory | Signal name | Mandatory

SWCLKTCLK |SWCLK YES TCLK YES Data synchronization clock,
(serial wire (test clock) driven by the host programmer/
clock) debugger.

For SWD, the host should
perform all read or write
operations on the SWDIO line on
the falling edge of SWDCK. The
PSOC™ Control C3 MCU performs
read or write operations on
SWDIO on the rising edge of
SWDCK.

For JTAG, the host writes to the
TMS and TDI pins of the PSOC™
Control C3 MCU on the falling
edge of TCK and the PSOC™
Control C3 MCU reads data on its
TMS and TDI lines on the rising
edge of TCK. PSOC™ Control C3
MCU writes to its TDO line on the
falling edge of TCK and the host
reads from the TDO line of the
PSOC™ Control C3 MCU on the
rising edge of TCK.

SWDIOTMS SWDIO YES TMS YES SWDIOQ is a bidirectional data
(serial wire data (test mode input/output signal.

input/output) select) TMS is the JTAG test mode select
signal, which is sampled at the
rising edge of TCK to determine
the next state.

(table continues...)

Programming specification 13 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

4 The protocol stack

Table 4 (continued) Pins/signals

Pin SWD JTAG Description

Signal name Mandatory | Signal name | Mandatory

SWOTDO SWO NO TDO YES SWO signal (also known as
(serial wire (test data TRACESWO) is required for serial
output) out) wire viewer (SWV) and not
required for SWD programming.
It provides real-time data trace
information from the PSOC™
Control C3 MCU, via the SWO pin,
while the CPU continues to run
at full speed. Data trace via SWV
is not available using the JTAG
interface.

TDO signal represents the data
shifted out of the device’s test or
programming logic and is valid
on the falling edge of TCK when
the internal state machine isin
the correct state.

TDI - - TDI YES TDI signal represents the data
(Test Data In) shifted into the device’s test or
programming logic. It is sampled
at therising edge of TCK.

XRES XRES NOZ XRES (Reset) |NO?Y External reset active LOW signal.
(External Reset) Theg(RES is not related to the
Arm standard. It is used to reset
the part as afirststepina
programming flow.

GND GND (Ground) YES GND YES Negative supply voltage
(Ground) (Ground)

VDD VDD NO? VDD NO? Positive supply voltage. The
(voltage drain (voltage PSOC™ Control C3 MCU can be
drain) drain drain) powered by external power
supply or by programmer.

1) XRES pin is mandatory for "Reset" PSOC™ Control C3 MCU acquisition mode, but not used for "power cycle" mode.

2) VDD pin is mandatory for "power cycle" PSOC™ Control C3 MCU acquisition mode, where the programmer powers the PSOC™
Control C3 MCU and external power is not applied. For "reset" acquisition mode, the source of power supplier does not matter, so
the pin is optional.

You can program a chip in either reset (recommended) or power cycle mode. The mode affects only the first
step - how to reset the part at the start of the programming flow. All other steps are the same.

Reset mode: To start programming, the host toggles the XRES line and then sends SWD/JTAG commands (see
Hardware-specific subroutines section). The power on the PSOC™ Control C3 MCU board can be supplied by the
host or by an external power adapter (the VDD line can be optional).

+ Power cycle mode: To start programming, the host powers on the PSOC™ Control C3 MCU and then starts
sending the SW/JTAG commands. The XRES line is not used

Programming specification 14 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

4 The protocol stack

The programmer should implement PSOC™ Control C3 MCU acquisition in reset mode. It is also the only way to

acquire the PSOC™ Control C3 MCU if the board consumes too much current, which the programmer cannot

supply. Power cycle mode support is optional and should be used only in the following conditions:

+ Thethird-party programmer does not implement the XRES line but can supply power to the PSOC™ Control
C3IMCU

Programming specification 15 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

5 Acquisition algorithm

5 Acquisition algorithm

This chapter describes in detail the programming flow of the PSOC™ Control C3 MCU. It starts with a high-level
description of the algorithm and then describes every step using pseudocode. All code is based on upper-level
subroutines composed of atomic SWJ instructions.

5.1 Constants and subroutines used in the acquisition flow

The following algorithms rely on a few low-level, hardware-specific subroutines which must be implemented by
the user. This section provides only a short overview of these functions.

See Hardware-specific backend functions for details.

Subroutine Description

IsJITAG() Returns any non-zero value if the underlying transport is JTAG (zero for SWD)

SetXRES(...) Controls the logic level on the XRES (nSRST) pin - hard reset

SetVoltage(..) Controls the voltage supplied by the debug adapter to power the target MCU. This
function is optional and should return an error if not implemented.

SWISequence(...) Generates the given bit sequence on the SWDIO/TMS pin, used for JTAG->SWD and
SWD->JTAG switching

ReadDAP(...) Reads (or writes) data to the CoreSight registers

WriteDAP(...)

SysSleepMs(..) Delays the execution by the given number of milliseconds

SysGetTimeMs () Returns the number of milliseconds that have elapsed since some fixed time point in
the past

See Constants and static data used in code for a detailed list of constants used by the subroutines.

The programming flow includes some operations that are used in all steps. The execution flow of these
subroutines is straightforward, so only a summary table is provided here.

See Appendix D: Code example for a detailed description.

Subroutine Description Example

ClearStickyErrors() Clears any sticky errors which could be left from | ClearStickyErrors
previous sessions

DAP_HandshakeAndInit(..) Performs a handshake and initializes the debug | DAP_HandshakeAndInit
port

ReadMem(...) Reads a 32-bit value from the memory address | ReadMem
provided

WriteMem(...) Writes a 32-bit value to the memory address WriteMem
provided

PollMem(..) Polls for the expected bit-field value in the given |PollMem
register

ReadCoreReg(...) Reads the Arm’ core register, special-purpose ReadCoreReg

register, or floating-point register

WriteCoreReg(..) Writes the Arm’ core register, special-purpose WriteCoreReg
register, or floating-point register

HaltCPU() Enables debug and halts the CPU using the HaltCPU
DHCSR register

Programming specification 16 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

infineon

5 Acquisition algorithm

Subroutine Description Example

ResumeCPU() Enables debug and resumes the CPU using the | ResumeCPU
DHCSR register

CheckIDLE(...) Checks whether the device is in WFA (wait for CheckIDLE

action), IDLE or DEAD branches

AcquireTestMode(...)

Acquires target in test mode by setting the
TST_MODE_TEST_MODE bit in the TST_MODE
register

AcquireTestMode

AcquireVectorCatch(..)

Acquires target using the vector catch method

AcquireVectorCatch

WaitForWFAMode(..)

Waits for the boot code to enter WFA mode used
in the unlock procedure using debug certificates

WaitForWFAMode

AcquireInWFAMode(...)

Acquires the device in WFA mode; used in the
unlock procedure using debug certificates

AcquireInWFAMode

LoadDebugCert(..) Loads the debug certificate to the RAM; used in | LoadDebugCert
the unlock procedure using debug certificates
StartWFARequest(...) Starts the WFA request; used in unlock StartWFARequest

procedure using debug certificates

5.2 DAP initialization subroutines

The very first step required to initiate a connection between the debugger and the target MCU is to initialize the
DAP port. This can be achieved by using the following subroutines:

5.2.1 DAP_Handshake

Waits for the debug interface to become enabled after a device reset. Boot timing parameters are given in Table
5 and are dependent on the CPU clock used by the boot code, type of boot, and other parameters. For
PowerCycle acquisition, the timeout depends on the design schematic and must be longer.

See the code example provided in DAP_Handshake.

Programming specification

17

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

int DAP_Handshake(void)

SWJSequenc SWJSeque AG_to_ DORMANT)
SWJSequence(DOR SWJSequence(DORMANT _to_SWD)

Legend
Actions
Conditions
Motes
Transitions
Success

Figure 7 Flowchart of the DAP_Handshake subroutine

5.2.2 DAP_Init

Initializes the debug port for programing operations. DAP must be enabled and accessible at the moment this
function is called.

Accepts access port number as the input:

« 0-SystemAP

« 1-CM33AP

See the code example in DAP_Init.

Programming specification 18 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

int DAP _Init(uinte_t apMum)

res [= WriteDAP(DP_RE!

P_REG_A3AZ_MSK;

select_reg_valug)

Figure 8 Flowchart of the DAP_Init subroutine

5.2.3 DAP_ScanAP

Scans the access ports first available with CPU registers access.
See the code example in DAP_ScanAP.

Programming specification 19 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

int DAP_ScanAP(uinte_t*aphum)

currdP =10

res = DAP_HandshakeAndInit{currAP)

res = ReadMem(CPLUID_ADDR, &v)

yes

CPU AP found,

. *apMum = currAP
Implementer is ARM B

Figure 9 Flowchart of the DAP_ScanAP subroutine

5.2.4 Reset

The reset procedure is used during device acquisition; thus, it is very important for reset to reliably happen
regardless of the state and hardware configuration of the target board. The most reliable reset type is hardware
reset because it performs a full reset of the device including the reset of the retention registers which preserve
their state between software resets.

The hardware reset signal can be routed to other (external to the MCU) peripherals on the target board. This
ensures that all target systems start from the well-known state after reset.

Moreover, a hardware reset is required to perform the MCU acquisition in test mode, which is the recommended
and most reliable acquisition method. It is strongly recommended to have the XRES pin properly routed to the
debug connector.

Programming specification 20 002-38998 Rev. *C
2025-01-13

* .
PSOC™ Control C3 MCU Infineon
Programming specification

5 Acquisition algorithm

If it is not possible for the debugger to perform a hardware reset for some reason (e.g., XRES signal not
connected), the reset subroutine uses several strategies to ensure that the reset is successful. These include the

following:

+ Hardware reset by toggling the XRES pin

+ Software reset by setting the RES_SOFT_CTL.TRIGGER_SOFT bit
+ Software reset by setting the AIRCR.SYSRESETREQ bit

+ Software reset by setting the DP->CTRL/STAT.CDBGRSTREQ bit
See the code example in System reset.

int Reset{uintd_t rstType, uintd_t apMum)

Hardware Reset
using XRES pin

Software Reset using
SRSS RES SOFT CTL register

Software Reset using
AIRCR.SYSREESETREQ hit.
This reset type requires

""" to the CPU Access Port.

res = Reset SYSEESETREQ{apMum)

Reset using DP.COBGRSTREQ hit

Figure 10 High-level flowchart of the reset procedure

Programming specification 21 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

5 Acquisition algorithm

infineon

int Reset_SOFT_CTL{uintg8_t apMum)

AP (AP_REG_TAR,
RSS_RES_SOFT_CTL)

Figure 11 SOFT_RES_CTL reset

Programming specification

22

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

5 Acquisition algorithm

infineon

NriteDAP(AP_REG_TAR, Al

res ="

int Reset_SYSRESETREQ{UINt3_t apMum)

ST

res = DAP_HandshakeAndInitiapMum)

_AP, AIRCR_ADDR)
">
A FI :
SETREQ)

()

Figure 12

Programming specification

SYSRESETREQ reset

23

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

5 Acquisition algorithm

int Reset COBGRSTREQ(void)

res = DAP_Handshake()

no

SUCCEEDED (res)

RL_STAT_
RL_STAT

Figure 13 CDBGRSTREQ reset

5.3 Acquire PSOC™ Control C3 MCU

The first step for the debugger before any programming or debugging actions is to acquire the device in a
known good state and prevent execution of the user’s code, which can put the MCU into a bad or corrupted
state or repurpose the SWJ pins?.

There are five different steps for PSOC™ Control C3 MCU acquiring, performed by the debugger sequentially:

1. Check the boot IDLE state

2. Acquire in test mode with hardware reset
3. Acquire in test mode with software reset
4, Acquire with vector catch with hardware reset
5. Acquire with vector catch with software reset
1 The application firmware is expected to follow this procedure for SWJ pin configuration:
1. Do not modify the configuration of the SWJ pins for parts that have a permanent SWD interface. They will be properly
configured and may have already connected to the SWD probe when the firmware starts
2. For parts that repurpose their SWD pins:
. If the SWD interface is presently active (CPUSS_DP_STATUS.SWJ_CONNECTED bit is ‘1’), leave the pins in their
current state; a probe has connected during the acquire window and the pins should not be repurposed
. If the SWD interface is not active, you may configure the pins and enable the alternate purpose
(use them as GPIO) such that the external debugger will not be able to communicate with the device.
Programming specification 24 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU im‘l eon

Programming specification

5 Acquisition algorithm

Check whether the devi

in IDLE or DEAD branch, whic
condition for programming, so Reset/Acquire
is not needed;

ition failed for some reason
(. 'ES is not conn), try to acquire in res = AcquireTestMode(RST_TYPE_SOFT)
Test mode using software reset

YectorCatch aci
method requires

Try acquire using WectarCatch = Acil

Try acquire using YectorCatch and
software pre-resst

Figure 14 Top-level acquisition flowchart for PSOC™ Control C3 MCU

See the code example in AcquireVectorCatch.

5.3.1 Step 1 - check boot IDLE state

The IDLE state of the PSOC™ Control C3 MCU is the state when the ROM boot code did not launch the user’s
application, but is executing an endless loop in one of the following branches:

« IDLE branch: The boot code entered test mode or waits for the debugger for further actions in
preproduction lifecycle stages such as SORT, NORMAL, or RMA

Programming specification 25 002-38998 Rev. *C
2025-01-13

* .
PSOC™ Control C3 MCU Infineon
Programming specification

5 Acquisition algorithm

« DEAD branch: Indicates a recoverable failure occurred (for example, an invalid TOC object, an empty flash,
or aninvalid app inside)

« CORRUPTED branch: Indicates that the major system failure occurred (for example, BIST failed), the
debugger has limited MCU access (via system access port only), and the programming is not possible

IDLE and DEAD branches are sufficient MCU states for the debugger to perform further programming or
debugging actions, so the additional device acquisition steps are not required.

Note: DEAD branch has many return codes.

int CheckiDLE{uint8_t *apMum)

res = ReadMem(BOOT_STATUS_ADDR, &v)

IDLE or DEAD branch

return true

Figure 15 Step 1 - check boot IDLE state flowchart

5.3.2 Step 2 - acquire in test mode

The test mode acquisition step has strict timing requirements that the host must meet to enter test mode
successfully.

Programming specification 26 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬂln eon

Programming specification

5 Acquisition algorithm

t

xXres tIite_up boot listen

XRES

Internal RESET

(

Cot%)f -M .< reset \>< boot code X wait for port acquire X host commands
JTAG to .
SWD - X SWD Xset TEST_MODEX)avallable
/

SWD Setting TEST_MODE = 1
CONNECTED will prevent any customer

firmware from starting

TEST_MODE

Figure 16 Timing diagram for entering test mode

This diagram details the chip’s internal signals while entering test mode. Everything starts from toggling the
XRES line (or applying power) so that the chip enters internal reset mode for t;ie ,, period. After that, the
system boot code starts execution. When completed, the CPU waits during a tjisten, period for a special
connection sequence on the SWJ port. If, during this time, the host sends the correct sequence of SWJ
commands, the CPU enters test mode. Otherwise, it starts the execution of the user’s code. Timing parameters
may vary depending on the boot code execution flow (see Table 5). Therefore, the best way to enter test mode
is to start sending an acquire sequence immediately after XRES is toggled (or power is supplied in power cycle
mode). This sequence is sent iteratively until it succeeds (all SWJ transactions are ACKed and all conditions are
met).

Table 5 Boot timing parameters

Parameter Description Min Max Units
250 ps

tiite_up Time from reset release until the CPU begins executing the
boot code

thoot Time from when the boot code started execution until it 2 500 ms
opens SWJ lines and starts waiting for the TEST_MODE
sequence. This time varies depending on the CPU clock,
device lifecycle stage, etc. Usually, less than 5 ms, but in the
most harsh scenario, it can be up to 500 ms.

tlisten Amount of time the boot code waits and listens for the SWJ |0 100 ms
port initialization sequence before starting the application
firmware execution.

Note: The default duration of the listen window (tijsien)
is 100 ms, but it may vary depending on the
provisioning.

Figure 16 shows the test mode acquisition procedure. It is detailed in terms of the SWD transaction.

Programming specification 27 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

int AcquiraTestMode(uin

Register holding hoot status must be cleared

fes = Writeh=r to get updated value later

Reset to launch ROM boot (preferably HW resat)

Re-cannect to the DAFP

ST_MODE_TEST_MODE)

d(TIMEOUT_BOGT_END)

>R

Figure 17 Test mode acquisition flowchart

Programming specification 28 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

5 Acquisition algorithm

intisTestModeLaunched{uint32_ttimeout)

SysSleepMs(10)

res = ReadMem(AP_SYS, BOOT_STATUS_ADDR, &v) Read BOOT _STATUS ADDR to check boot status

Figure 18 Flowchart for step 2 - acquire in test mode

See the code example in AcquireTestMode

5.3.3 Step 3 - acquire PSOC™ Control C3 MCU using vector catch

The “acquire chip” sequence in the previous section is based on entering the PSOC™ Control C3 MCU test mode
by triggering a hard-reset condition, and then sending the acquire sequence within the specified time window.
The hard-reset condition is generated by toggling either the XRES pin or the power supply to the device.
Programming by entering test mode using XRES or power cycling is the recommended method for third-party
production programmers or any other general-purpose programmer.

There might be cases where the host programmer hardware or software constraints might prevent
programming of the device in test mode. These constraints can include:

+ The host programmer hardware might be I/0-pin-constrained and cannot spare an extra I/O for toggling
the XRES pin or the power supply to the MCU. Only the SWJ protocol pins are available for programming

« The host programmer software application is unable to meet the timing requirements to enter test Mode
after triggering a hard-reset condition. In such a scenario, the MCU enters the user code execution mode
after the test mode timing window elapses

For a host programmer with any of these constraints, the modified acquire-chip sequence provided in this
section does not require XRES/power supply toggling, and it does not have the test-mode timing requirements.

Programming specification 29 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

5 Acquisition algorithm

Only the SWJ protocol pins are used for programming. This modified sequence works only under the following
conditions:

« The SWJ pins on the MCU have not been repurposed for any other application-firmware-specific use. If the
SWJ pins are repurposed as part of the existing firmware image in the flash, the SWJ pins are not available
for communication with the host SWJ interface to update the existing firmware image

+ The access restriction properties allow the SWJ access to the access debug ports (normal access restriction
properties are applicable if the device is in the normal protection state, secure, and dead access restriction
properties are applicable if the device is in the secure and dead protection states respectively)

Developers wanting to program devices using the modified sequence should be aware of these limitations.
Devices coming from the factory satisfy both these conditions, and therefore, can be programmed using the
modified acquire sequence. However, if firmware that does not meet any of these conditions, then the devices
are programmed to the MCU, subsequent re-programming of the device is not possible using the modified
acquire sequence. Due to this limitation, this method is not recommended for third-party programmers or
general-purpose programmers because they would generally be required to support programming under all
possible operating conditions.

Programming specification 30 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

AcquireVectarCatch({uintd_t rstType, uint8_t apMum)

[t is not pﬂSSihlE to handle 2 ype, apium)
CPL state (e.g. breakpoints) via the

AndinitfapMum)

Set WC_CORERESET and TRCEMNA res = WriteMem{DEMCR_ADDR, DEMCRE_TRCENA | DEMCR .ORERESET)
(34

res = Reset(RST_TYPE_SOFT & RST_TYPES_ALLOWED, apMum)

.M33, DEMCR, DEMCRE_TRCEMNA)

=

Figure 19 Acquire using vector catch

Programming specification 31 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

5 Acquisition algorithm

5.4 Unlock the access to the CPU (helper functions)

The Cortex’-M33 access port can be disabled by the access restrictions policy. The access port can be either
temporarily or permanently disabled. If temporarily disabled, it can be re-enabled using the debug certificate.

Note: Certificate cannot override the access port that is permanently disabled by access restrictions.

The Boot ROM verifies the certificate; if the verification is successful, it enables CM33-AP as specified in the
certificate.
Procedure of opening CM33-AP using debug certificate:
1. RAM: Sys-AP must be enabled to load the debug certificate directly into the RAM which is reserved by
Boot ROM at the end of RAM. This flow can be used to debug CM33 core. Flow details:
a. The debugger sets the appropriate BOOT_DLM_CTL.REQUEST and issues a software reset by
setting RES_SOFT_CTL.TRIG_SOFT =1

b. The Boot ROM resets, detects BOOT_DLM_CTL.REQUEST, and sets BOOT_DLM_CTL.WFA, thus,
indicating that it waits for a certificate loaded

c. The debugger loads the debug certificate into the RAM using Sys-AP. The address of the certificate
loaded must be placed at BOOT_DLM_CTL_2. After all, the debugger sets
BOOT_DLM_CTL.REQUEST again to trigger the verifying certificate

d. Boot ROM can now verify the debug certificate
e. If verification is successful, the appropriate APs are enabled

Programming specification 32 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

5.4.1 WaitForWFAMode

int WaitF orWWFAMode(int timeaut)

etfTimeMs(

leepMs(10)

tDelta = SysGetTimeMs() - t

Figure 20 Wait for the device to enter WFA mode

This is a helper function used in the AcquireinWFAMode subroutine. It polls the BOOT_DLM_CTL register waiting
for the Boot ROM to enter WFA mode. In WFA mode, the Boot ROM is spinning in the IDLE loop waiting for the
debug certificate to be loaded by the debugger.

See the code example in WaitForWFAMode.

Programming specification 33 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

5 Acquisition algorithm

5.4.2 AcquireiInWFAMode

int AcguireinWFAMode(uint32_t req)

res = WriteMem(BOOT_DLM_CTL, req)

Figure 21 Acquire the device and wait for WFA mode

This function acquires the device in WFA mode and waits for the Boot ROM to be ready to accept the debug
certificate. The debugger sets the appropriate BOOT_DLM_CTL.REQUEST and issues a software reset by setting
RES_SOFT_CTL.TRIG_SOFT =1.

See the code example in AcquireInWFAMode.

Programming specification 34 002-38998 Rev. *C
2025-01-13

* .
PSOC™ Control C3 MCU Infineon
Programming specification

5 Acquisition algorithm

5.4.3 LoadDebugCert

int LoadDehugCert{const char *cert_path)

uint32_t cert_buffer[DEBLIG_CERT_SIZE [4]

nenicert_path, "rb")

Write to BOOT DLM_CTL 2
to make BOOT ROM know where
to seek debug certificate

Load cerificate
binary to RAM starting at
address DEBUG_CERT_ADDR

Figure 22 Loads the debug certificate to the RAM

Reads the debug certificate and loads its contents to the RAM.
See the code example in LoadDebugCert.

Programming specification 35 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

5 Acquisition algorithm

5.4.4 StartWFARequest

infineon

int StartWFAReq uinta_t *apMum)

WriteMem({AP_SYS, BOO Write dummy status

This triggers soft-reset,
ignore return code

WriteMem (A

pMs(10)

res = ReadMem(BOOT_DLM_STATUS, &s

Scan the Access Ports for
the first available with
CPU registers access

res = DAP_ScanAP{apMum)

CPU AP is closed, continue
polling until timeout

SysGetTimeMs(- t

Figure 23 Executes the WFA request

StartWFA request is executed after debug certificate is loaded at DEBUG_CERT_ADDR (and that address is also
written to BOOT_DLM_CTL_2). In fact, WFA bit is now cleared to let ROM APP start reading certificate. As an

indication of successful result - CM33 access point must appear in a scanning list.
See the code example in StartWFARequest.

Programming specification 36 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU
Programming specification

5 Acquisition algorithm

infineon

5.5 Unlock the access to the CPU using the debug certificate
5.5.1 UnlockCPUAccess
int UnlockCPUAccess(const char*cert_path)
res = DAP_HandshakeAndinit(0)
(3
Switch to SysAP and acquire el TR EEC EET PRl e
o (0 B res = AcquireinWFAMWFEA_REQUEST DEBUG_CERT)
(3
!‘Z ;Tjh Iﬂ:']'f ed tEcuh ;?&M res = LoadDebugCert{cern_path)
)
VS
Execute WFA request, e C I B P ket B I e
this will unlock CM33 AP res = StartWFARequest(&aphum)
<)
Figure 24 Unlocks the access to the CM33 access port

This function performs the whole unlock sequence described in Unlock the access to the CPU (helper
functions). After running this function, the device is reset and CM33 access port is opened by the Boot ROM. The
CPU is not halted after the reset, so it starts to execute the application code. This is sufficient for the debugger
to attach to the running target and observe its state.

See the code example in UnlockCPUAccess.

Programming specification 37 002-38998 Rev. *C

2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

6 Using SROM APIs to program/erase flash

6 Using SROM APIs to program/erase flash

As described in Acquisition algorithm, SROM API must be called after successful acquisition. SROM APIs function
calling is performed by means of setting the appropriate registers of the CM33 processor as follows:

e pc-program counter

« sp-stack pointer

+ lr-linked register

+ r0,rl, r2 - general registers

The program counter value is filled with a pointer (see Table 2), depending on a desired operation. General
registers hold the parameters of a SROM API. A linked register stores an address in RAM where breakpoint
assembler operation code is stored. A stack pointer should contain an address of RAM, so that the function can
have adequate size of memory for its operation.

Note that the data is flashed in chunks of 512 bytes. Smaller data cannot be flashed or erased. Also, functions
work in blocking mode; therefore, the CPU cannot be utilized while flash operations are fulfilled.

6.1 SROM erases APl usage

The pseudocode for SROM erase API utilization is shown in Erase APl usage pseudocode. Erase SROM API erases
one row of flash at a given address. The code snippet provides a method where Ir holds an address of RAM
when breakpoint is stored; therefore, the processor halts itself from letting know that the function is done. If
the full size of flash is inserted, as shown in the code snippet Erase API usage pseudocode, the example
application erases the entire flash.

6.2 SROM program APl usage

The pseudocode for SROM program API utilization is shown in Program APl usage pseudocode. It shows how to
set core registers, where data to be written, flash context, and break pointer operation to RAM to achieve image
flashing are included. Dividing the hexadecimal file into parts of 512 bytes and incrementing the start of flash
bank, the entire image is programmed into flash.

Programming specification 38 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

7 Appendix A: Intel hex file format

7 Appendix A: Intel hex file format

Intel hex file records are a text representation of hexadecimal-coded binary data. Only ASCII characters are
used, so the format is portable across most computer platforms. Each line (record) of Intel hex file consists of
six parts, as shown in Figure 25.

Start Code (Colon Byte Count Address Record Type Data Checksum
Character) (1 byte) (2 bytes) (1 byte) (N bytes) (1 byte)
Figure 25 Hex file record structure

Start code, one character - an ASClI colon (:)

+ Byte count, two hex digits (1 byte) - specifies the number of bytes in the data field

« Address, four hex digits (2 bytes) - a 16-bit address of the beginning of the memory position for the data

+ Record type, two hex digits (00 to 05) - defines the type of the data field. The record types used in the hex
file generated by Infineon are as follows:
- 00 - Data record, which contains the data and 16-bit address

- 01-End of file record, which is a file termination record and has no data. This must be the last line of
the file; only one is allowed for every file
- 04 - Extended linear address record, which allows full 32-bit addressing. The address field is 0000, the
byte count is 02. The two data bytes represent the upper 16 bits of the 32-bit address, when combined
with the lower 16-bit address of the 00-type record
« Data, a sequence of ‘n’ bytes of the data, represented by 2n hex digits

+ Checksum, two hex digits (1 byte), which is the least significant byte of the two's complement of the sum of
the values of all fields except fields 1 and 6 (start code ‘:” byte and two hex digits of the checksum)

Examples for the different record types used in the hex file generated for the PSOC™ Control C3 MCU are as
follows:

Consider that these three records are placed in consecutive lines of the hex file (chip-level protection and end
of hexfile).

0200000490600A
©100000002FD
00000001 ff

For the sake of readability, “record type” is highlighted in red and the 32-bit address of the chip-level protection
isin blue.

The first record (:0200000490600A) is an extended linear address record as indicated by the value in the record
type field (04). The address field is 0000, the byte count is 02. This means that there are two data bytes in this
record. These data bytes (0x9060) specify the upper 16 bits of the 32-bit address of data bytes. In this case, all
the data records that follow this record are assumed to have their upper 16-bit address as 0x9060 (in other
words, the base address is 0x90600000). 0A is the checksum byte for this record:

OX0A = Ox100 - (0Ox02+0x00+0x00+0x04+0Xx90+0X60

The next record (:0100000002FD) is a data record, as indicated by the value in the record type field (00). The
byte count is 01, meaning there is only one data byte in this record (02). The 32-bit starting address for these

Programming specification 39 002-38998 Rev. *C
2025-01-13

http://en.wikipedia.org/wiki/ASCII

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

7 Appendix A: Intel hex file format

data bytes is at address 0x90600000. The upper 16-bit address (0x9060) is derived from the extended linear
address record in the first line; the lower 16-bit address is specified in the address field of this record as 0000.
FD is the checksum byte for this record.

The last record (:00000001FF) is the end-of-file record, as indicated by the value in the record type field (01).
This is the last record of the hex file.

Programming specification 40 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU in fineon

Programming specification
8 Appendix B: Serial wire debug (SWD) protocol

8 Appendix B: Serial wire debug (SWD) protocol

The SWD protocol is a packet-based serial transaction protocol. At the pin level, it uses a single bidirectional
data connection (SWDIO) and a clock connection (SWDCK). The host programmer always drives the clock line,
while either the programmer or the PSOC™ Control C3 MCU drives the data line. A complete data transfer (one

SWD packet) requires 46 clocks and consists of three phases:
+ Packet Request - The host programmer issues a request to the PSOC™ Control C3 MCU (silicon)
+ Acknowledge Response - The PSOC™ Control C3 MCU (silicon) sends an acknowledgement to the host

+ Data Transfer Phase - The data transfer is either from the PSOC™ Control C3 MCU to the host, following a
read request (RDATA), or from the host to the PSOC™ Control C3 MCU, following a write request (WDATA).
This phase is present only when a packet request phase is followed by a valid (OK) acknowledge response

Figure 26 shows the timing diagrams of the read and write SWD packets.

SWD Write Packet (46 clocks)

SWDCK
(Driven by Host) ﬁ SS
SWDIO i i i i i i i i i
(Bidirectional) i i e i i i i S SSX
s . si = i . _ P
[@ =) = z | z = = = >
- a 2 ol ¢ E v 40 o = e 5 |2 =
] O 2 Al2:3] Ky S i & ! ' © ©] o
4 n < & [Z ACK[0:2] g g i n:
SWDIO dri b Packet Request - Header Acknowledgement Data (32+1 bit)
riven by:
Host Target Device Host

SWD Read Packet (46 clocks)

SWDCK
(Driven by Host §> SS

(
SWDIO SS |
(Bidirectiona) —i . _ — : A X l f B X
i = = e i i H S =
R - B z - 1 o 0 s |l | |8 |&8 {% -
& £ = A[2:3] S 9 ! I g g | | = g I =
& | < & | | . | ACK0:2] 5 |8 i g 5
Packet Request - Header Acknowledgement Data (32+1 bit)
SWDIO driven by Host Target Device

a) Host Write Cycle — host sends data on the SWDIO line on falling edge of SWDCK and target will read that data on next SWDCK
rising edge (for example, 8-bit header data).

b) Host Read Cycle — target sends data on SWDIO line on rising edge of SWDCK and the Host should read that data on next
SWDCK falling edge (for example, ACK phase (ACK[2:0]), Read Data (rdata[31:0])).

c) The Host should not drive the SWDIO line during TrN phase. During first TrN phase (%2 cycle duration) of SWD packet, target
starts driving the ACK data on the SWDIO line on the rising edge of SWDCK. The host should read the data on the subsequent
falling edge of SWDCK. The second TrN phase is 1.5 clock cycles as shown in figure above. Both target and host will not drive
the line during the entire second TrN phase (indicated as ‘z’). Host should start sending the Write data (wdata) on next falling

edge of SWDCK after second TrN phase.

Figure 26 Write and read SWD packet timing diagrams

The SWD packet is transmitted in the following sequence:

+ Thestart bitinitiates a transfer; it is always logical ‘1’

+ The APnDP bit determines whether the transfer is an AP access (indicated by ‘1’) or a DP access (indicated
by ‘0’)

« The next bitis RnW, which is ‘1’ for read from the MCU or ‘0’ for a write to the MCU

The ADDR bits (A[3:2]) are register select bits for the access port or debug port. See Table 3 for register

definition.

« The parity bit contains the parity of APnDP, RnW, and ADDR bits. This is an even parity bit. If the number of
logical 1s in these bits is odd, then the parity must be ‘1’ otherwise it is ‘0’

41 002-38998 Rev. *C

Programming specification
2025-01-13

PSOC™ Control C3 MCU iﬁn eon

Programming specification

8 Appendix B: Serial wire debug (SWD) protocol

+ Ifthe parity bit is not correct, the PSOC™ Control C3 MCU ignores the header and there is no ACK response.
From the host standpoint, the programming operation should be aborted and retried by doing a device
reset

+ Thestop bitis always logic ‘0’

+ The park bitis always logic ‘1’ and should be driven high by the host

The ACK bits are device-to-host response. Possible values are shown in Table 6. Note that ACK in the current
SWD transfer reflects the status of the previous transfer. ‘OK ACK’ means that the previous packet was

successful. WAIT response requires a data phase, as explained in the following list. For a FAULT status, the
programming operation should be aborted immediately.

« Fora WAIT response, if the transaction is a read, the host should ignore the data read in the data phase.
The PSOC™ Control C3 MCU does not drive the line and the host must not check the parity bit as well

+ For a WAIT response, if the transaction is a write, the data phase is ignored by the PSOC™ Control C3 MCU.
However, the host must still send the data to be written from the standpoint of implementation. The data
parity bit corresponding to the data should also be sent by the host

+ For a WAIT response, it means that the PSOC™ Control C3 MCU is processing the previous transaction. The
host can try for a maximum four continuous WAIT responses to see if an OK response is received. If it fails,
then the programming operation should be aborted and retried

+ Fora FAULT response, the programming operation should be aborted and retried by doing a device reset

Table 6 ACK response for SWD transfers
ACK][2:0] SWD
OK 001
WAIT 010
FAULT 100
NACK 111

« Thedata phase includes a parity bit (even parity)

« Foraread packet, if the host detects a parity error, then it must abort the programming operation and try
again

« For awrite packet, if the PSOC™ Control C3 MCU detects a parity error in the data sent by the host, it
generates a FAULT ACK response in the next packet

Turnaround (TrN) phase: There is a single-cycle turnaround phase between the packet request and the ACK
phases, as well as between the ACK and data phases for write transfers as shown in Figure 26. According to the
SWD protocol, both the host and the PSOC™ Control C3 MCU use the TrN phase to change the drive modes on
their respective SWDIO lines. During the first TrN phase after packet request, the PSOC™ Control C3 MCU starts
driving the ACK data on the SWDIO line on the rising edge of SWDCK in the TrN phase. This ensures that the host
can read the ACK data on the next falling edge. Thus, the first TrN cycle lasts for only a half-cycle duration. The
second TrN cycle of the SWD packet is one and one-half cycle long. Neither the host nor the PSOC™ Control C3
MCU should drive the SWDIO line during the TrN phase, as indicated by ‘z’ in Figure 26.

« The address, ACK, and read and write data are always transmitted LSB first

+ According to the SWD protocol, the host can generate any number of SWD clock cycles between two
packets with the SWDIO LOW. You should generate several dummy clock cycles (three) between two
packets or make the clock free running in IDLE mode

Note: The SWD interface can be reset by clocking 50 or more cycles with the SWDIO kept HIGH. To return to
the idle state, SWDIO must be clocked LOW once.

Programming specification 42 002-38998 Rev. *C
2025-01-13

infineon

PSOC™ Control C3 MCU
Programming specification

9 Appendix C: Joint Test Action Group (JTAG) protocol

9 Appendix C: Joint Test Action Group (JTAG) protocol

The PSOC™ Control C3 MCU JTAG interface complies with the IEEE 1149.1 specification and provides additional
instructions. There are two TAPs in the silicon:

« Inl0OSS for boundary scan
« InCPUSS DAP (IDCODE 0x4BA06477) for device debugging and programming

The two TAPs are connected in series, where TDO of the 0SS TAP is connected to TDI of the DAP TAP. See Figure
27.

IOSS TAP CPUSS DAP TAP

Instruction Reg

Instruction Reg

[17:0] 11301 |
TDI TDO DI Data Reg [Too
[34:0]

Figure 27 10SS/DAP TAP connection

Each TAP consists of a 35-bit data register (called DP/AP access register). The size of the instruction register is 4
bits for the DAP TAP and 18 bits for the 0SS TAP. The important instructions to program the device through
JTAG are listed in Table 7.

Table 7 PSOC™ Control C3 MCU JTAG instructions

Bit Code [3:0] | Instruction PSOC™ Control C3 MCU function

1110 IDCODE Connects TDI and TDO to the device 32-bit JTAG ID code

1010 DPACC Connects TDI and TDO to the DP/AP access register (35-bit) for access to the
debug port registers

1011 APACC Connects TDI and TDO to the DP/AP access register (35-bit) for access to the
access port registers

1111 BYPASS Bypasses the device by providing a 1-bit latch (bypass register) connected
between TDI and TDO

If an instruction that is not applicable is shifted into a TAP, the TAP goes into bypass mode. In bypass mode, the
data register is only 1-bit long with the contents of 0. The bypass mode is used to isolate the PSOC™ Control C3
MCU TAP. For example, if targeting the IOSS TAP, the DAP TAP is put in bypass mode by shifting in the BYPASS
instruction into its instruction register and if targeting the DAP TAP, the 0SS TAP will be placed in bypass mode.
See the examples of TAP configuration in Figure 28.

Programming specification 43 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU
Programming specification

9 Appendix C: Joint Test Action Group (JTAG) protocol

infineon

Instruction Regs.

TDl— 18-bits |—» 4-bits |—TDO

I0SS DAP

a.

Data Regs. {bypass, apacc}, read_data = data_reg[34:3]

TDI—{ 0 |— 35-bits —>TDO

I0SS DAP

b.

Data Regs. {apacc, bypass}, read_data = data_reg[35:4]

s — 35-bits ——[0}—>00

I0SS DAP

C.

Figure 28

10SS/DAP TAP configuration examples

+ Combines instruction registers; 22 bits total

« Enables access to the APACC registers of the DAP for device debugging and programming and configures
the 0SS TAP in bypass mode; 36 bits total

« Enables access to the I0SS APACC registers for enabling test modes and configures the DAP TAP in bypass

mode; 36 bits total

Programming specification

44

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10 Appendix D: Code example

10.1 Hardware-specific backend functions

The following code example is written in hardware-independent way so that it relies on a few backend
functions which must be implemented by the user. Implementation of these functions will be different across
different debug adapters and different operating systems.

This code expects that the following functions are available during linking:

10.1.1 extern int IsJTAG(void);

/***
* Returns any non-zero value if underlying transport is JTAG (zero for SWD).
*/

extern int IsJTAG(void);

10.1.2 extern int SetXRES(state);

/***

* Controls the logic level on XRES (nSRST) pin.

*

* Parameters:

* state - value for the XRES pin (zero -> logic low, non-zero -> logic high)
%

* Return value:

* zero - 0.K.

* non-zero - Error

*/
extern int SetXRES(int state);

10.1.3 extern int SetVoltage(voltage);

/***

* Controls the voltage supplied by the debug adapter to power the target MCU.
* This function is optional and should return Error if not implemented.
*

* Parameters:

* voltage - output voltage, in millivolts

*

* Return value:

* zero - 0.K.

* non-zero - Error

*/
extern int SetVoltage(uint32_t voltage);

Programming specification 45 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

10.1.4 extern int SWJSequence(out_bits, num_bits);

/***

* Generates given bit sequence on the SWDIO/TMS pin, used for JTAG->SWD and SWD->JTAG
switching.

*

* Parameters:

* out_bits - pointer to buffer containing sequence bit data, LSB first
* num_bits - number of bits in sequence

*

* Return value:

* zero - 0.K.

* non-zero - Error

*/
extern int SWJSequence(const uint8_t* out_bits, size_t num_bits);

10.1.5 extern int Read/WriteDAP(reg, ap_n_dp, value);

/***

* Reads (or Writes) data to CoreSight registers.Pay attention, PSoC Control C3 is based on
ADIv6 debug interface.

*

* Parameters:

* reg - register address

* For Read operation this parameter should take one of the following values:
* - DP_REG_DPIDR 0x00

* - DP_REG_CTRL_STAT 0x04

* - DP_REG_SELECT 0x08

* - DP_REG_RDBUFF 0xecC

* - AP_REG_CSW 0xD00

* - AP_REG_TAR 0xD0o4

* - AP_REG_DRW oxDeC

* For Write operation this parameter should take one of the following values:
* - DP_REG_ABORT 0x00

* - DP_REG_CTRL_STAT 0x04

* - DP_REG_SELECT 0x08

* - DP_REG_RDBUFF 0x0eC

* - AP_REG_CSW O]

* - AP_REG_TAR 0xDo4

* - AP_REG_DRW oxDoC

* ap_n_dp - ‘1’ for AP registers, ‘9’ for DP registers
* value - value to write (or pointer to the variable where read result will be stored)

* Return value:

* zero - 0.K.

* non-zero - Error

*/
extern int ReadDAP(uint8_t reg, uint8_t ap_n_dp, uint32_t* value);
extern int WriteDAP(uint8_t reg, uint8_t ap_n_dp, uint32_t value);

Programming specification 46 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.1.6 extern void SysSleepMs(uint32_t msec);

/***

* Delays execution by the given ammount of milliseconds
*
* Parameters:
* msec - delay time in milliseconds
*
* Return value:
* none
*/
extern void SysSleepMs(uint32_t msec);

10.1.7 extern int SysGetTimeMs(void);

/***

* Returns the number of milliseconds that have elapsed since some fixed time point in the past.
*

* Parameters:

* none

*

* Return value:

* number of milliseconds

*/
extern int SysGetTimeMs(void);

Programming specification 47 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.2 Constants and static data used in code
10.2.1 Constants
/* --- Target acquisition methods --- */

/* Initial check whether boot code is already in IDLE or DEAD branch */
#define ACQUIRE_CHECK_IDLE (1 << 9)

/* Test mode (TM) acquisition (recommended) */

#define ACQUIRE_TEST_MODE (1 << 1)

/* Vector Catch */

#define ACQUIRE_VECTOR_CATCH (1 << 2)

#define ACQUIRE_METHOD ALLOWED (ACQUIRE_TEST MODE | ACQUIRE_VECTOR_CATCH)

/* --- MCU reset types --- */

/* Hardware reset (XRES)*/

#define RST_TYPE_XRES (1 << 0)
/* Hardware reset (Power Cycle) */
#tdefine RST_TYPE_POWER (1 << 1)

/* Software reset (RES_SOFT_CTL.TRIGGER_SOFT) */
#tdefine RST_TYPE_RES_SOFT_CTL (1 << 2)

/* Software reset (AIRCR.SYSRESETREQ) */

#define RST_TYPE_SYSRESETREQ (1 << 3)

/* Software reset (DP->CTRL/STAT.CDBGRSTREQ) */
#tdefine RST_TYPE_CDBGRSTREQ (1 << 4)

#define RST_TYPE_SOFT (RST_TYPE_RES_SOFT_CTL | RST_TYPE_SYSRESETREQ |
RST_TYPE_CDBGRSTREQ)

#define RST_TYPE_HARD (RST_TYPE_XRES | RST_TYPE_POWER)

#define RST_TYPE_ANY (RST_TYPE_HARD | RST_TYPE_SOFT)

#define RST_TYPE_ALLOWED \
(RST_TYPE_XRES | RST_TYPE_RES_SOFT_CTL | RST_TYPE_SYSRESETREQ | RST_TYPE_CDBGRSTREQ)

/* --- Access Ports --- */

/* AP[@] System Access Port*/

#tdefine AP_SYS 0

/* AP[1] Cortex-M33 Access Port */

#define AP_CM33 1

/* Maximum number of Access Ports */

#tdefine AP_MAX 2

/* Prefered Access Port (AP[1] - CM33 Core is used by default in this script) */
#tdefine AP_TO_USE 1

/* "@" - Can use any available AP if needed; "1" - Strict AP usage to preferred only*/
#define AP_TO_USE_STRICT 0

#tdefine AP_CM33_ADIV6 ©OxF0002000 /* AP cpu num for psoc c¢3 in ADIV6*/
#tdefine AP_SYS_ADIV6 ©OxF0000000 /* AP Sys num for psoc c¢3 in ADIV6*/

static const uint32_t AP_ADDR[] = { /* Array of AP adresses: */
AP_SYS_ADIV6, /* Address of System Access Port - AP[O] */
AP_CM33_ADIV6 /* Address of Cortex-M33 Access Port - AP[1] */

Programming specification 48 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

¥

/* --- AP/DP registers --- */

/* DP IDCODE 0x4C013477 for SWD or ©x4BA06477 for JITAG */

#define DP_IDCODE_MSK OxFOOOOFFF

#tdefine DP_IDCODE_VAL 0x40000477

#tdefine AP_REG_A3A2_MSK (3u << 2u) /* Mask for Bits[3:2] of the AP register address */
#tdefine DP_SELECT_MSK OXFFFFFFF@ /* Mask for bits[31:4] of DP->SELECT register */
#define APV2_REG_CSW 0xDoo /* Offset of AP->CSW register (Adivé)*/

#define APV2_REG_TAR oxDo4 /* Offset of AP->TAR register (Adivé6)*/

#tdefine APV2_REG_DRW oxDecC /* Offset of AP->DRW register (Adivé6)*/

#tdefine AP_CSW_PROT_MSK (Ox4F<<24) /* Ox4F000000:Bus access protection control mask. */
#define AP_CSW_SIZE_WORD (2 << @)

/* Bus access protection control for Secure access */
#define AP_CSW_PROT_VAL (0x0B<<24)

/* Bus access protection control for Non Secure access. */
#define AP_CSW_PROT_NS_VAL (0x4B<<24)

/* --- Target-specific registers and definitions --- */
/* Boot status result address */
#tdefine BOOT_STATUS_ADDR 0x52200418

/* SRSS->TST_MODE: Test Mode Control Register */

#define TST_MODE 0x52200400

/* SRSS->TST_MODE.TEST_MODE (bit[31], ©x80000000):

* 1 - Indicates the chip is in test mode. © - Normal operation mode */
#define TST_MODE_TEST_MODE (1 << 31)

/* RES_SOFT_CTL: Soft Reset Trigger Register */

#tdefine RES_SOFT_CTL 0x52200410

/* RES_SOFT_CTL.TRIG_SOFT (bit[@]): Triggers a soft reset. The reset clears this bit.*/
#define RES_SOFT_CTL_TRIG_SOFT (1 << 0)

/* -- WFA acquiring, sending debug token -- */

/* Register to ser type of request to bootROM */

/* set WFA_REQUEST_DEBUG_CERT here for WFA acquiring with debug certificate */
#tdefine BOOT_DLM_CTL 0x52200404

#define BOOT_DLM_CTL_WFA_MASK 0x80000000

/* Holds address of debug certificate, set DEBUG_CERT_ADDR during WFA acquiring here*/
#define BOOT_DLM_CTL_2 0x52200408

/* BootROM sets status after WFA request*/
#tdefine BOOT_DLM_STATUS 0x5220040C
/* Possible values for BOOT_DLM_STATUS: */
#tdefine DEBUG_CER_VERIFICATION_SUCCESS ©x0D500084
#tdefine CYBOOT_WFA_POLLING 0x0D500080

/* Long-style namings*/
#tdefine SRSS_RES_SOFT_CTL RES_SOFT_CTL

Programming specification 49 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

#define SRSS_RES_SOFT_CTL_TRIG_SOFT RES_SOFT_CTL_TRIG_SOFT
#define SRSS_TST_MODE TST_MODE
#define SRSS_TST_MODE_TEST_MODE TST_MODE_TEST_MODE

/* Mask for MODULE_ID in status word */

#define CYBOOT_ID_MSK OxFFF00000

/* The module IDs for BootROM in case of success */

#tdefine CYBOOT_ID_SUCCESS 0x0D500000

/* The module IDs for BootROM in case of fail */

#define CYBOOT_ID_FAIL OxBAF00000

/* Mask for RESULT_CODE (status) in status word */

#define CYBOOT_STATUS_MSK OX0000FFFF

/* Result code indicating BootROM launched the application */
#tdefine CYBOOT_NEXT_APP_LAUNCHED 0x0D500067

/* Result code indicating BootROM reached IDLE branch */
#define CYBOOT_IDLE_BRANCH_REACHED 0x0D500068

#define BOOT_STATUS_LIS_WND CYBOOT_IDLE_BRANCH_REACHED

#define CYBOOT_DEBUG_TOKEN_PASSED ©x0D500084 /* Debug token verified */*/
#define CYBOOT_DEBUG_TOKEN_FAILED ©x@D500085 /* Debug token verification failed */

#define CYBOOT_IMG_INVALID OXBAFOOOAQ /* Image invalid/erased flash*/
#define CYBOOT_SUCCESS 0x0D50B002
#define CYBOOT_SUCCESS_1 0x05501000
#define CYBOOT_SUCCESS_2 0x0800A002
#tdefine CYBOOT_BAD_PARAM OxBAF00001
#define CYBOOT_LOCKED OxBAF00002
#tdefine CYBOOT_STARTED OxBAF00003
#tdefine CYBOOT_FINISHED OxBAF00004
#define CYBOOT_CANCELED OxBAF00005
#tdefine CYBOOT_TIMEOUT OxBAF00006
#tdefine CYBOOT_NOT_IMPLEMENTED OxBAF00007
#tdefine CYBOOT_FAILED OxBAF00008
#tdefine CYBOOT_L1_APP_DESCR_INVALID OxBAF00011
#define CYBOOT_SERV_APP_DESCR_INVALID OxBAF00013
#define CYBOOT_BOOTROW_READ_FAILED OxBAF00020
#tdefine CYBOOT_BOOTROW_CORRUPTED OxBAF00021
#tdefine CYBOOT_OTP_INIT_FAILED OxBAF00022
#tdefine CYBOOT_OTP_READ_FAILED OxBAF00023
#tdefine CYBOOT_OTP_WRITE_FAILED OxBAF00024
#tdefine CYBOOT_OTP_SMIF_CFG_INVALID OxBAF00025
#define CYBOOT_ASSET_FACTORY_HASH_INVALID OxBAF00026
#tdefine CYBOOT_PUBKEY_REQUEST_FAILED OxBAF00030
#tdefine CYBOOT_PUBKEY_FORMAT_INVALID OxBAF00031
#tdefine CYBOOT_PUBKEY_VALIDATION_FAILED OxBAF00032
#define CYBOOT_PUBKEY_HASH_PTE_INVALID OxBAF00033
#tdefine CYBOOT_PUBKEY_HASH_ICV_INVALID OxBAF00034
#define CYBOOT_PUBKEY_HASH_OEM_INVALID OxBAF00035
#tdefine CYBOOT_APP_VALIDATION_FAILED OxBAF00036
#tdefine CYBOOT_APP_LAUNCH_ADDR_INVALID OxBAF00037
#tdefine CYBOOT_SIGNATURE_INVALID OxBAF00038
#tdefine CYBOOT_MCUBOOT_INTERNAL_ASSERT OxBAF00039
#define CYBOOT_RAM_APP_FORMAT_INVALID OxBAF0OO0O3A
#define CYBOOT_FLASH_ADDRESS_INVALID OxBAF00049
Programming specification 50

infineon

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

#define CYBOOT_FLASH_TRIM_INVALID OXBAFOO04A
#define CYBOOT_FLASH_INIT FAILED OXBAFO004B
#define CYBOOT_FLASH_ADDR_INVALID OXBAF0004C
#define CYBOOT_FLASH_PARAM_INVALID OXBAF0004D
#define CYBOOT_FAULT_UNEXPECTED OXBAFOOQAE
#define CYBOOT_NUM_ZEROS_@_INVALID OXBAF00050
#define CYBOOT_NUM_ZEROS_1_INVALID OXBAF00051
#define CYBOOT_NUM_ZEROS_2_ INVALID OXBAF00052
#define CYBOOT_NUM_ZEROS_3_INVALID OXBAF00053

#define CYBOOT_NUM_ZEROS_KEY_© HASH_INVALID OxBAF00054
#define CYBOOT_NUM_ZEROS_KEY_1_HASH_INVALID @©xBAF@@055
#define CYBOOT_NUM_ZEROS_ASSET_HASH_INVALID @xBAF@@@56
#define CYBOOT_NUM_ZEROS_FACTORY_HASH_INVALID @xBAF@@@57
#define CYBOOT_NUM_ZEROS_SECURE_HASH_INVALID OxBAF@@5S
#define CYBOOT_NUM_ZEROS_PROT_FW_HASH_INVALID OXBAF@0@59
#define CYBOOT_NUM_ZEROS_FLASH_TRIMS_INVALID OxBAFO@O5A

/* Note: Macro checks only for the most often DEAD codes */
#tdefine isDEADbranch(v) v==CYBOOT_IMG_INVALID ? true: \

(v==CYBOOT_APP_LAUNCH_ADDR_INVALID ? true:false)

/* Locations where function pointers on blocking flash operations are stored*/

#define SROMAPI_ERASE_ROW Ox1080FFEQ
#define SROMAPI_PROGRAM_ROW Ox1080FFE4
#define SROMAPI_WRITE_ROW OX1080FFES8
#tdefine ROW_SIZE 512

/* Secure sram offset */
#tdefine SRAM_S_BASE ©x34000000

/* Dual breakpoint code */
#tdefine DUAL_BKPT_INSTR OxXBEOOBEOO

/* Redefine some arm data*/
t#tdefine RO
#define R1
#define R2
#tdefine R3
#tdefine SP DCRSR_REGSEL_MSP
#tdefine LR DCRSR_REGSEL_LR
#define PC DCRSR_REGSEL_PC

W N RO

infineon

#define MAX_ENTRIES 960 /* Scanning ROM tables*/

/* --- Timings --- */

#tdefine TIMEOUT_HANDSHAKE 1000

#define TIMEOUT_BOOT_END 1000

#tdefine TIMEOUT_HALT_CPU 300

#tdefine TIMEOUT_LISTEN_WND 200

/* --- Debug Certificate --- */

#define DEBUG_CERT_SIZE 127 /* Debug token size can vary*/

#tdefine DEBUG_CERT_ADDR 0x34004000 /* Recommended address to load debug token */
Programming specification 51 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

#define WFA_REQUEST_DEBUG_CERT OEM_ROT_KEY_SIGNED
/* Token types*/

#define OEM_ROT_KEY_SIGNED 2

#define PROT_FW_ROT_KEY_SIGNED

/* --- Debug Access Port (DAP) --- */

/* APnDP for DP access */

#define ACC_DP 0

/* APnDP for AP access */

#tdefine ACC_AP 1

/* AP->ABORT.ORUNERRCLR (bit[4], 0x00000010): Clears CTRL/STAT.STICKYORUN */
#tdefine AP_ABORT_ORUNERRCLR (1 << 4)

/* AP->ABORT.WDERRCLR (bit[3], ox00000008): Clears CTRL/STAT.WDATAERR */
#tdefine AP_ABORT_WDERRCLR (1 << 3)

/* AP->ABORT.STKERRCLR (bit[2], 0x00000004): Clears CTRL/STAT.STICKYERR */
#define AP_ABORT_STKERRCLR (1 << 2)

/* AP->ABORT.STKCMPCLR (bit[1], 0x00000002): Clears CTRL/STAT.STICKYERR */
#tdefine AP_ABORT_STKCMPCLR (1 << 1)

/* AP->SELECT.APSEL (bits[31:24], OxFFo00000): Selects an AP */

#tdefine AP_SELECT_APSEL_RSH 24

/* DP->CTRL/STAT.CSYSPWRUPREQ (bit[30], 9x40000000): System powerup request */
#define DP_CTRL_STAT_CSYSPWRUPREQ (1 << 30)

/* DP->CTRL/STAT.CDBGPRWUPREQ (bit[28], 0x10000000): Debug powerup request */
#tdefine DP_CTRL_STAT_CDBGPRWUPREQ (1 << 28)

/* DP->CTRL/STAT.CDBGRSTREQ (bit[26], ©x04000000): Debug reset request */
#define DP_CTRL_STAT_CDBGRSTREQ (1 << 26)

/* DP->CTRL/STAT.STICKYERR (bit[5], ©x00000020): Error in AP transaction */
#define DP_CTRL_STAT_STICKYERR (1 << 5)

/* DP->CTRL/STAT.STICKYCMP (bit[4], ©x00000010): Match on a pushed operations*/
#tdefine DP_CTRL_STAT_STICKYCMP (1 << 4)

/* DP->CTRL/STAT.STICKYORUN (bit[1], ox00000002): Overrun detection */
#define DP_CTRL_STAT_STICKYORUN (1 << 1)

/* DP->CSW.Prot (bits[30:24], 0x23000000): Bus access protection control. Set to 0x23, otherwise
* no access to CPU via core AP */

#define DP_CSW_PROT_VAL (0x23 << 24)

/* DP->CSW.Size (bits[2:0], 0x00000002): Size of access <- Word (32-bits) */

#define DP_CSW_SIZE_WORD (2 << @)

/* --- Flash Patch and Breakpoint Unit (FPB) --- */

/* FPB->FP_CTRL: FlashPatch Control Register in ARMv7/8-M. In ARMv6-M, it is BP_CTRL: Breakpoint
* Control register.*/

#define FP_CTRL OxE0002000

/* FPB->FP_CTRL.KEY (bit[1], O0x00000002): Enables write to the register */

#define FP_CTRL_KEY (1 << 1)

/* FPB->FP_CTRL.ENABLE (bit[0], 0x00000001): Flash Patch global enable. Enables
* the FPB.*/

#define FP_CTRL_ENABLE (1 << 0)

/* FPB->FP_COMPO: FlashPatch Comparator Register® in ARMv7/8-M. In ARMv6-M, it is BP_COMPO:

Programming specification 52 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

infineon

10 Appendix D: Code example

* Breakpoint Comparator registers@ FPB->FP_COMP.BPADDR (bits[31:1], OxFFFFFFFE): Breakpoint
* address. Note that the bitfields are changed vs. ARMv6/7-M */

#tdefine FP_COMPO OxE0002008

/* FPB->FP_COMP.BE (bit[@], ©x00000001): Breakpoint enable */
#define FP_COMP_BE (1 << @)

/* --- System Control Block (SCB) --- */

/* SCB->CPUID Base Register */

#define CPUID_ADDR OxEQOOEDOO
/* SCB->AIRCR: Application Interrupt and Reset Control Register */
#tdefine AIRCR_ADDR OxE@OOEDOC

/* SCB->AIRCR.VECTKEY (bits[31:16], ©x05FA0000): Vector Key. The value OxO5FA must be written
* to this register */

#tdefine AIRCR_VECTKEY_VAL (OxO5FA << 16)

/* SCB->AIRCR.SYSRESETREQ (bit[2], ©x00000004): System Reset Request */
#tdefine AIRCR_SYSRESETREQ (1 << 2)

/* --- Debug Control Block (DCB) --- */

/* DCB->DHCSR: Debug Halting Control and Status Register*/

#tdefine DHCSR_ADDR OXEQOOEDFO

/* DCB->DHCSR.DBGKEY (bits[31:16], ©xAO5F0000): Must write OxAO5F to DBGKEY
* to enable write accesses to bits[15:0] */

#tdefine DHCSR_DBGKEY_VAL (OxAO5F << 16)
/* DCB->DHCSR.S_SLEEP (bit[18], 0x00040000): Indicates whether the processor is sleeping */
#tdefine DHCSR_S_SLEEP (1 << 18)

/* DCB->DHCSR.S_HALT (bit[17], ©x00020000): Indicates whether the processor is in Debug
* state */

#define DHCSR_S_HALT (1 << 17)
/* DCB->DHCSR.C_HALT (bit[1], ox00000002): Processor halt bit */
#tdefine DHCSR_C_HALT (1 << 1)

/* DCB->DHCSR.C_DEBUGEN (bit[©], ©x00000001):
* Halting debug enable bit (DBGKEY|C_HALT|C_DEBUGEN = @xA@5F0003)*/

#define DHCSR_C_DEBUGEN (1 << 0)
/* DCB->DCRSR: Debug Core Register Selector Register */
#tdefine DCRSR_ADDR OXEOOOEDF4

/* DCB->DCRSR.REGWNR (bit[16], 0x00010000): Specifies the access type for the transfer
* ('@' - Read, '1' - Write)*/
#tdefine DCRSR_REGWNnR (1 << 16)
/* DCB->DCRSR.REGSEL (bits[6:0], O0x0000007F): Specifies the ARM core register, special-purpose

* register, or Floating-point extension register*/

#tdefine DCRSR_REGSEL_MSK ©x0000007F

/* DCB->DCRSR.REGSEL = xPSR */

#tdefine DCRSR_REGSEL_xPSR 0x10

/* DCB->DCRSR.REGSEL = Main stack pointer, MSP */

#define DCRSR_REGSEL_MSP ox11

/* DCB->DCRSR.REGSEL = PC/DebugReturnAddress */

#tdefine DCRSR_REGSEL_PC OxOF

/* DCB->DCRDR: Debug Core Register Data Register */

#tdefine DCRDR_ADDR OXEOQOOEDF8

/* DCB->DEMCR: Debug Exception and Monitor Control Register */

#define DEMCR_ADDR OXE@OOEDFC
Programming specification 53

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

/* DCB->DEMCR.TRCENA (bit[24], 0x01000000): Global enable for all DWT and ITM features */
#tdefine DEMCR_TRCENA (1 << 24)
/* xPSR.T (bit[24], ©x01000000): Thumb bit */
#tdefine xPSR_T (1 << 24)
Programming specification 54 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU im‘l eon

Programming specification

10 Appendix D: Code example

10.2.2 Static data

/**

* SWJ state switching sequences
***/

/* JTAG to SWD - standard ARM command to switch SWJ-DP from JTAG to SWD operations:
* 1) Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current
* interface is in its reset state. The JTAG interface detects only the 16-bit
* JTAG-to-SWD sequence starting from the test-logic-reset state.
* 2) Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS: ©bo11ll 1001 1110 0111, most
* significant bit (MSb) first. This can be represented as 0x79E7, transmitted MSB first or
* OXE79E, transmitted least significant bit (LSb) first.
* 3) Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was
already
* in SWD operation before sending the select sequence, the SWD interface enters line reset
state.
* 4) Make sure SWD is ready for a start bit (min. 2 clocks with SWDIO == LOW)
* Note: Obsolete for ADIV6. Switching over the DORMANT state is preferable */
static const uint8_t bJTAG_to_SWD_len = 18 * 8;
static const uint8_t bJITAG_to_SWD[] = {
OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
OX9E, OXxE7,
OXFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
0x00, 0x00

/* SWD to JTAG - standard ARM command to switch SWJ-DP from SWD to JTAG operations

1) Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that the current
interface is in its reset state. The SWD interface detects the 16-bit
SWD-to-JTAG sequence only when it is in reset state.

2) Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS: ©b0@11 1100 1110 0111, MSb first.
* This can be represented as Ox3CE7, transmitted MSb first or OxE73C, transmitted LSb first.
* 3) Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This ensures that if SWJ-DP was
* already in JTAG operation before sending the select sequence, the JTAG TAP enters the
* test-logic-reset state.

* 4) Make sure SWD is ready for a start bit (min. 2 clocks with SWDIO == LOW) */
static const uint8_t bSWD_to JTAG_len = 18 * 8;
static const uint8_t bSWD_to_JTAG[] = {
OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
Ox3C, OxE7,
OXFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
0x00, 0x00

}s

/* SWD to DORMANT - standard ARM command to switch SWJ-DP from SWD to dormant state:

* 1) Send at least 50 SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the SWD
* interface is in the reset state. The target only detects the SWD-to-DS sequence when it is
* in the reset state. Note: Fifty-six cycles will be used here to align subsequent data.
* 2) Send the 16-bit SWD-to-DS select sequence on SWDIOTMS. This sequence can be represented
as either:
* - 9x3DC7 transmitted MSB first.
* - OxE3BC transmitted LSB first. */
Programming specification 55 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

static const uint8_t bSWD_to DORMANT_len = 9 * 8;
static const uint8_t bSWD_to DORMANT[] = {

OxFF, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,

OxBC, OxE3

};

/* JTAG to DORMANT - standard ARM command to switch SWJ-DP from JTAG to dormant state:
* 1) Send at least five SWCLKTCK cycles with SWDIOTMS HIGH. This sequence places the JTAG TAP

state

* machine into the Test-Logic-Reset state, and selects the IDCODE instruction.
* Note: Eight cycles will be used here to align subsequent data.

* 2) Send the recommended 31-bit JTAG-to-DS select sequence on SWDIOTMS.

* This sequence can be represented as either:

* - OX2EEEEEE6 transmitted MSB first, that is, starting from bit 3e.

* - Ox33BBBBBA transmitted LSB first. */

static const uint8_t bJTAG_to_DORMANT_ len = 5 * 8;
static const uint8_t bJTAG_to_DORMANT[] = {

OXFF,

OxBA, OxBB, OxBB, 0x33

};

/* DORMANT to SWD - standard ARM command to switch SWJ-DP from dormant state to SWD:
* 1) Send at least eight SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the

target is

* not in the middle of detecting a Selection Alert sequence. The target is permitted to
detect the

* Selection Alert sequence even if this 8-cycle sequence is not present.

* 2) Send the 128-bit Selection Alert sequence on SWDIOTMS. This sequence can be represented
as either:

* - Ox49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.

* - Ox19BCOEA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

* 3) Send four SWCLKTCK cycles with SWDIOTMS LOW.

*

4) Send 16-bit Arm CoreSight SW-DP activation code sequence on SWDIOTMS.
This sequence can be represented as either:

* - 9x58 transmitted MSB first.

* - Ox1A transmitted LSB first.

* 5) Send a sequence to place the target into a known state - at least 50 SWCLKTCK cycles with
SWDIOTMS HIGH.

* This sequence ensures that the SWD interface is in the line reset state.
* 6) Send at least 2 idle with SWDIOTMS LOW */

static const uint8_t bDORMANT_to_SWD_len = 25 * 8;

static const uint8_t bDORMANT_to_SWD[] = {
OxFF,
0x92, OxF3, 0x09, Ox62,
0x95, 0x2D, 0x85, 0x86,
OXE9, OXAF, OxDD, OXE3,
OxA2, OxOE, OxBC, 0x19,
OxAQ, OxF1,
OXFF, OxFF, OxFF, OxFF, OxFF,
Ox3F

1

*

/* DORMANT to JTAG - standard ARM command to switch SWJ-DP from dormant state to JTAG:

Programming specification 56 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

infineon

* 1) Send at least eight SWCLKTCK cycles with SWDIOTMS HIGH. This sequence ensures that the
target is

* not in the middle of detecting a Selection Alert sequence. The target is permitted to
detect the

* Selection Alert sequence even if this 8-cycle sequence is not present.

* 2) Send the 128-bit Selection Alert sequence on SWDIOTMS.

* This sequence can be represented as either:

* - Ox49CF9046 A9B4A161 97F5BBC7 45703D98 transmitted MSB first.

* - Ox19BCOEA2 E3DDAFE9 86852D95 6209F392 transmitted LSB first.

* 3) Send four SWCLKTCK cycles with SWDIOTMS LOW.

* 4) Send 16-bit Arm CoreSight SW-DP activation code sequence on SWDIOTMS.

* This sequence can be represented as either

* - x50 transmitted MSB first.

* - Ox0A transmitted LSB first.

* 5) Send a sequence to place the target into a known state: four SWCLKTCK cycles with
SWDIOTMS LOW

* to ensure that the TAP state machine is in the Run-Test/Idle state. Then at least five
SWCLKTCK

* cycles with SWDIOTMS HIGH to ensure that the TAP state machine is in the Test-Logic/Reset
state */
static const uint8_t bDORMANT_to_JTAG_len = 20 * 8;
static const uint8_t bDORMANT_to_JTAG[] = {

OxFF,

0x92, OxF3, ox09, 0x62,

0x95, Ox2D, ox85, 0x86,

OXE9, OXAF, OxDD, OxE3,

OxA2, OxOE, OxBC, 0x19,

OxAQ, 0x00,

OxFF
¥

Programming specification 57 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

10.3 Error checking functions

10.3.1 SUCCEEDED

infineon

/***

* Checks functions return codes:

* 2 0 0.K.
* < @ Error
* = -2 Not supported by the current CPU + target interface combination

* Return value
* 1 SUCCEEDED
* © FAILED
*/
int SUCCEEDED(int result) {
if (result >= 0) {
return 1;
} else {
return 0;

10.3.2 FAILED

/***

* Checks functions return codes:

* 2 0 0.K.
* < © Error
* = -2 Not supported by the current CPU + target interface combination

* Return value
* © SUCCEEDED
* 1 FAILED
*/
int FAILED(int result) {
if (result < 0) {
return 1;
} else {
return 0;

Programming specification 58

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.4 DAP initialization functions

10.4.1 ClearStickyErrors

/***

* (Clears any sticky errors which could be left from previous sessions.
* Otherwise only power-down-up cycle helps to restore DAP.
*
* Return value
* >= 0 O0.K.
* < © Error
*/
static int ClearStickyErrors() {
LOG_ENTRY();

int result;
uint32_t abort_reg;
uint32_t abort_val;

if (IsJITAG()) {
/* Power up DAP and clear sticky errors using DP.CTRL/STAT:
* [30]:CSYSPWRUPREQ, [28]:CDBGPWRUPREQ, [5]:STICKYERR, [4]:STICKYCMP, [1]:STICKYORUN
* Note: for JTAG, sticky error bits are read-write enabled and writing €1’ to these bits
clears
* associated sticky errors. For SWD, these bits are read-only and to clean the sticky
errors,
* you should write to appropriate bits of DP.ABORT register*/
abort_reg = DP_REG_CTRL_STAT;
abort_val = DP_CTRL_STAT_CSYSPWRUPREQ | DP_CTRL_STAT_CDBGPRWUPREQ | DP_CTRL_STAT_STICKYERR |
DP_CTRL_STAT_STICKYCMP | DP_CTRL_STAT STICKYORUN;

} else {
abort_reg = DP_REG_ABORT;
abort_val = AP_ABORT_ORUNERRCLR | AP_ABORT_WDERRCLR | AP_ABORT_STKERRCLR |
AP_ABORT_STKCMPCLR;

}

result = WriteDAP(abort_reg, ACC_DP, abort_val);

LOG_EXIT();
return result;

Programming specification 59 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

10.4.2 DAP_Handshake

infineon

/**

* Handshake: wait for debug interface becomes enabled after device reset.
* In the worst case, when the boot code performs application HASH verification,
* boot time varies and depends on CPU clock used by boot code. For PowerCycle,
* timeout depends on the design schematic and must be longer.
*
* Return value
* >= 0 0.K.
* < O Error
*/
static int DAP_Handshake(void) {
LOG_ENTRY();
uint32_t v;
int tDelta;
int t
int result

SysGetTimeMs();
RESULT_ERR;

do {
if (IsSJITAG()) {
/* If the interface was left in SWD by a previous session,
* try switching to JTAG once over the dormant state. */
SWJlSequence (&bSWD_to_DORMANT[@], bSWD_to_DORMANT_len);
SWJSequence (&bDORMANT to_JTAG[@], bDORMANT to_JTAG_len);
} else {
/* Switch to SWD over the dormant state */
SWJlSequence (&bJITAG_to_DORMANT[@], bJITAG_to_DORMANT_len);
SWlSequence (&bDORMANT_to_SWD[©], bDORMANT_to_SWD_len);
}
vV = 0;
// TODO: Read IDCODE step is different in catld j-link scripts
ReadDAP (DP_REG_DPIDR, ACC_DP, &v);
/* DAP is responsive if we can read IDCODE */
if ((v & DP_IDCODE_MSK) == DP_IDCODE_VAL) {
_DP_SELECT_LAST = @; /* Zeroing last used value of DP->SELECT */
result RESULT_OK;
break;
}
tDelta = SysGetTimeMs() - t;
} while (tDelta < TIMEOUT_HANDSHAKE); /* Timeout reached? */

LOG_EXIT(result);
return result;

Programming specification 60

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

10.4.3 DAP_lInit

/**

* TInitialize the Debug Port for programing operations. Accepts Access Port number as input:
* @ - System AP; 1 - CM33 AP.
*
* Return value
* >= 0 O0.K.
* < © Error
*/
static int DAP_Init(uint8_t apNum) {
LOG_ENTRY();
int result;

uint32_t reg_addr; /* Effective AP's reg addr */
uint32_t select_reg _value; /* DP->SELECT value for acces to AP's register with given offset */
uint32_t reg_index; /* Bits[3:2] of the address, that are used to select a specific

register in a bank.
* Used as RegIndex in ReadDAP/WriteDAP functions */

/* Power up DAP using DP.CTRL/STAT: [30]:CSYSPWRUPREQ, [28]:CDBGPWRUPREQ
* And clear sticky errors:
* - SWD: Using AP.ABORT register
* - JTAG: Using DP.CTRL/STAT: [5]:STICKYERR, [4]:STICKYCMP, [1]:STICKYORUN
* For JTAG, sticky error bits are read-write enabled and writing '1' to these bits clears
associated sticky errors.
* For SWD, these bits are read-only and to clean the sticky errors, you should write to
appropriate bits of
* DP.ABORT register */
if (ISITAG()) { /* JTAG */
// TODO: In jlink script, DP-CTRL/STAT register is named DP_CTRL_ (no stat). Align across
all code
result = WriteDAP(DP_REG_CTRL_STAT, ACC_DP,
DP_CTRL_STAT_CSYSPWRUPREQ | DP_CTRL_STAT_CDBGPRWUPREQ |
DP_CTRL_STAT_STICKYERR /* ©x50000020 */);
} else { /* SWD */
// TODO: In jlink script, ABORT register is named as DP (e.g. DP_ABORT_STKERRCLR)
result =
WriteDAP(DP_REG_ABORT, ACC_DP,
AP_ABORT_ORUNERRCLR | AP_ABORT_WDERRCLR | AP_ABORT_STKERRCLR |
AP_ABORT_STKCMPCLR /* 0x0000001E */);
if (SUCCEEDED(result)) {
result = WriteDAP(DP_REG_CTRL_STAT, ACC_DP, DP_CTRL_STAT_CSYSPWRUPREQ |
DP_CTRL_STAT_CDBGPRWUPREQ); // 0x50000000
}

/* Initialize DP->SELECT and AP->CSW */

if (SUCCEEDED(result)) {
/* Get effective address of CSW register */
reg_addr AP_ADDR[apNum] + APV2_REG_CSW;
select_reg value = reg_addr & DP_SELECT_MSK;

reg_addr & AP_REG_A3A2_MSK;

reg_index

Programming specification 61 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control C3 MCU Infineon
Programming specification

10 Appendix D: Code example

result = WriteDAP(DP_REG_SELECT, ACC_DP, select_reg value); /* DP->SELECT <-
select_reg value */
if (SUCCEEDED(result)) {
_DP_SELECT_LAST = select_reg_value; /* Update last used value of DP->SELECT */

/* Set CSW (DbgSwEnable=0, Prot=0x0B, SPIDEN=0, Mode=0x@, TrInProg=0, DeviceEn=0,
AddrInc=Auto-increment off,
* Size=Word (32 bits)) */
/* Note: Set Prot bits in DAP CSW register, because of no access to CPU registers via M33
or M55 AP without these
* bits */
if (_DOMAIN_SECURE != @) {
result = WriteDAP(reg_index, ACC_AP, AP_CSW_PROT_VAL | AP_CSW_SIZE_WORD); /*
0x0B000002 */
} else {
result = WriteDAP(reg_index, ACC_AP, AP_CSW_PROT_NS_VAL | AP_CSW_SIZE_WORD); /*
0x4B000002 */
}

LOG_EXIT(result);
return result;

10.4.4 DAP_HandshakeAndInit

/***

* Pperforms Handshake and Initializes the Debug Port Accepts Access Port number as input:
* @ - System AP; 1 - CM33 AP.
*
* Return value
* >= 0 0.K.
* < 0 Error
*/
static int DAP_HandshakeAndInit(uint8_t apNum) {
LOG_ENTRY();
int result;

result = DAP_Handshake();

if (SUCCEEDED(result)) {
result = DAP_Init(apNum);
if (SUCCEEDED(result)) {
¥

LOG_EXIT();
return result;

Programming specification 62 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.5 Memory access and polling functions

10.5.1 ReadMem

/**

* Reads 32-bit value from provided memory address.
* Note APv2 means that reading is done due to ADIV6 (v1 is adiv5)
*
* Return value
* >= 0 0.K.
* < © Error
*/
static int ReadMem(uint8_t apNum, uint32_t address, uint32_t *value) {
int result;
/* AP.TAR <- address */
result = WriteAPv2(apNum, APV2_REG_TAR, address);
if (SUCCEEDED(result)) {
/* AP.DRW -> value */
result = ReadAPv2(apNum, APV2_REG_DRW, value);

}
return result;
}
10.5.2 WriteMem

/**

* Writes uint32_t value to provided memory address.
* Note APv2 means that writing is done due to ADIV6 (vl is adiv5)
*
* Return value
* >= 0 O0.K.
* < © Error
*/
static int WriteMem(uint8_t apNum, uint32_t address, uint32_t value) {
int result;
/* AP.TAR <- address */
result = WriteAPv2(apNum, APV2_REG_TAR, address);
if (SUCCEEDED(result)) {
/* AP.DRW <- value */
result = WriteAPv2(apNum, APV2_REG_DRW, value);

return result;

Programming specification 63 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.5.3 PollMem

/**

* Polls for the expected bit-field value in given register
*
* Return value
* >= 0 O0.K.
* < © Error/Timeout
*/
static int PollMem(uint32_t regAddr, uint32_t fieldMsk, uint32_t rsh,
uint32_t expectedValue, int timeout,
uint32_t sleepBetweenPolling, uint32_t *regValue) {
LOG_ENTRY();
int result;
int t;
int tDelta;
tDelta = -1;

t = SysGetTimeMs();
do {
result = ReadMem(AP_TO_USE, regAddr, regValue);
BREAK_IF_FAILED(result);
if (((*regValue & fieldMsk) >> rsh) == expectedValue) {
result = RESULT_OK;
break;
}
/* Sleep between polling - let the CPU do its job and avoid too much garbage on SWD */
if ((sleepBetweenPolling > @) && (tDelta >= @ /* not first iteration*/)) {
SysSleepMs(sleepBetweenPolling);
}
tDelta = SysGetTimeMs() - t;
} while (tDelta < timeout);

LOG_EXIT(result);
return result;

Programming specification 64 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control C3 MCU Infineon
Programming specification

10 Appendix D: Code example

10.6 CPU AP lookup

10.6.1 DAP_ScanAP

/**

* Scans the Access Ports for the first available with CPU registers access.
* In fact, MCU contains AP_CM33_ADIV6 and AP_SYS_ADIV6 APs
* Return value
* >= 0 0.K.
* < 0 Error
*/
int DAP_ScanAP(uint8_t *apNum) {
LOG_ENTRY();

uint32_t v;
uint8_t currAP;
int result;

/* Try all possible Access Ports */
currAP = AP_SYS;
while (currAP < AP_MAX) {
if (currAP != AP_SYS) {
/* Initializes DAP and selects Access Port with provided number */
result = DAP_HandshakeAndInit(currAP);
if (SUCCEEDED(result)) {
/* Try to read CPUID register @OxEGOOEDOO */
result = ReadMem(currAP, CPUID_ADDR, &v);
/* If the CPUID Implementer is ARM, the Access Port is correct (we have access to the
ARM
* registers) */
if (SUCCEEDED(result) && ((v & OXFFO00000) == 0x41000000)) {
*apNum = currAP;
LOG_EXIT(result);
return RESULT_OK;

}

CUrrAP += 1;

LOG_EXIT(result);
return RESULT_ERR;

Programming specification 65 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.7 Arm’ Core control and register access functions

10.7.1 ReadCoreReg

/**

* PReads ARM core register, special-purpose register, or Floating-point extension register CPU
must

* be halted for this operation

*

* Return value

* >= 0 0.K.

* < © Error

*/
static int ReadCoreReg(uint32_t regsel, uint32_t *value) {

LOG_ENTRY();

int result;

/* DCRSR (OXE@OOEDF4) <- (REGWNnR == read) | REGSEL */
result = WriteMem(AP_TO_USE, DCRSR_ADDR, (regsel & DCRSR_REGSEL_MSK));
if (SUCCEEDED(result)) {

/* DCRDR (OxEOOOEDF8) -> value */

result = ReadMem(AP_TO_USE, DCRDR_ADDR, value);

LOG_EXIT(result);
return result;

Programming specification 66 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.7.2 WriteCoreReg

/**

* Writes ARM core register, special-purpose register, or Floating-point extension register CPU
* must be halted for this operation
*
* Return value
* >= 0 0.K.
* < © Error
*/
static int WriteCoreReg(uint32_t regsel, uint32_t value) {
LOG_ENTRY();
int result;

/* DCRDR (OxE@OOEDF8) <- value */
result = WriteMem(AP_CM33, DCRDR_ADDR, value);
if (SUCCEEDED(result)) {
/* DCRSR (OXE@@OEDF4) <- (REGWnR == write) | REGSEL */
result = WriteMem(AP_CM33, DCRSR_ADDR, (DCRSR_REGWnR | (regsel & DCRSR_REGSEL_MSK)));

LOG_EXIT(result);
return result;

Programming specification 67 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.7.3 HaltCPU

/***

* Enables debug and halts the CPU using the DHCSR register
%
* Return value
* >= 0 O0.K.
* < © Error
*/
static int HaltCPU(void) {
LOG_ENTRY();

int result;
uint32_t v;

/* Enable debug, and halt the CPU using the DHCSR register: OXEQOOEDFO <- OxAO5F0003 */
result = WriteMem(AP_TO USE, DHCSR_ADDR, DHCSR_DBGKEY_ VAL | DHCSR_C_HALT | DHCSR_C_DEBUGEN);

/* Check S_HALT bit [17] in DHCSR register (@OXE@@OEDFQ) */
if (SUCCEEDED(result)) {
result = PollMem(DHCSR_ADDR, DHCSR_S_HALT, @, DHCSR_S_HALT, TIMEOUT_HALT_CPU, @, &v);

LOG_EXIT(result);
return result;

Programming specification 68 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

10.7.4 ResumeCPU

/***

* Enables resumes the CPU using the DHCSR register
*
* Return value
* >= 0 0.K.
* < © Error
*/
static int ResumeCPU(void) {
LOG_ENTRY();

int result;
uint32_t v;

/* Resume CPU (keeping debug enabled) using the DHCSR register OxEQOQEDFO <- OxAO5F0001 */
result = WriteDAP(AP_REG_TAR, ACC_AP, DHCSR_ADDR);
if (SUCCEEDED(result)) {
result = WriteDAP(AP_REG_DRW, ACC_AP, DHCSR_DBGKEY_VAL | DHCSR_C_DEBUGEN);
if (SUCCEEDED(result)) {
/* Check S_HALT (bit[17] in DHCSR register @OxEQOOEDFO) is cleared *Most* time, S_HALT
bit is
* cleared immediately and correct value is read here. This will eliminates excessive
polling
* and keeps SWD traffic clear*/
result = ReadDAP(AP_REG_DRW, ACC_AP, &v);

/* If S_HALT bit was not cleared immediately, poll for it */
if (SUCCEEDED(result) && ((v & DHCSR_S_HALT) != @)) {
result = PollMem(DHCSR_ADDR, DHCSR_S_HALT, @, @, TIMEOUT_HALT_CPU, @, &v);

LOG_EXIT();
return result;

Programming specification 69 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

10.8 System reset

10.8.1 Reset

/**

* Resets the device using either of:
* 1. Hardware reset by toggling XRES pin
* 2. Software reset by setting the RES_SOFT_CTL.TRIGGER_SOFT bit
* 3. Software reset by setting the AIRCR.SYSRESETREQ bit
4. Software reset by setting the DP->CTRL/STAT.CDBGRSTREQ bit

* Return value
* >= 0 O0.K.
* < © Error
*/
static int Reset(uint8_t rstType, uint8_t apNum) {
LOG_ENTRY();

int result;
result = RESULT_ERR;

/* Attempt to reset the device with different methods
* Notel: do not check OK/WAIT/FAULT ACKs for the data write phase since the target
immediately
* reboots.
* Note2: caller code needs to do Handshake and DAP Init after reset or in case of failure */

/* 1. Hardware reset by toggling XRES pin */
if ((rstType & RST_TYPE_XRES) != 9) {

SetXRES(0); /* nNRESET == LOW */

SysSleepMs(50); /* Make sure that device recognizes the reset */
SetXRES(1); /* nRESET == HIGH */

result = RESULT_OK;

/* 2. Software reset by setting the RES_SOFT_CTL.TRIGGER_SOFT bit:
* This type of software reset can work via SYS-AP, so it is more preferable vs. SYSRESETREQ
*/
if (FAILED(result) && ((rstType & RST_TYPE_RES_SOFT_CTL) != @)) {
/* AP.TAR <- @(SRSS->RES_SOFT_CTL) */
result = WriteDAP(AP_REG_TAR, ACC_AP, RES_SOFT CTL);
if (FAILED(result)) {
result = DAP_HandshakeAndInit(apNum);
if (SUCCEEDED(result)) {
result = WriteDAP(AP_REG_TAR, ACC_AP, RES_SOFT_CTL);

}
/* AP.DRW <- TRIGGER_SOFT bit */

if (SUCCEEDED(result)) {
WriteDAP(AP_REG_DRW, ACC_AP, RES_SOFT_CTL_TRIG_SOFT);

Programming specification 70 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

/* 3. Software reset by setting the AIRCR.SYSRESETREQ bit */
if (FAILED(result) && ((rstType & RST_TYPE_SYSRESETREQ) != @) && (apNum != AP_SYS)) {
/* AP.TAR <- @(AIRCR OXE@OOEDOC) */
result = WriteDAP(AP_REG_TAR, ACC_AP, AIRCR_ADDR);
if (FAILED(result)) {
result = DAP_HandshakeAndInit(apNum);
if (SUCCEEDED(result)) {
result = WriteDAP(AP_REG_TAR, ACC_AP, AIRCR_ADDR);

}
/* AP.DRW <- Ox05FA0004 */
if (SUCCEEDED(result)) {
WriteDAP(AP_REG_DRW, ACC_AP, (AIRCR_VECTKEY_VAL | AIRCR_SYSRESETREQ));

/* 4. Software reset by setting the DP->CTRL/STAT.CDBGRSTREQ bit
* In worst case, if standard software reset via SYSRESETREQ failed, it may mean that the
* firmware did very bad things disabling the debug pins or AHB_AP access (anything behind the
DAP). However, if we still can access the DAP registers, the last thing we could try is to
* reset the target via DP->CTRL/STAT.CDBGRSTREQ.*/
if (FAILED(result) && ((rstType & RST_TYPE_CDBGRSTREQ) != 0)) {
result = DAP_Handshake();
if (SUCCEEDED(result)) {
WriteDAP(DP_REG_CTRL_STAT, ACC_DP, DP_CTRL_STAT_CSYSPWRUPREQ | DP_CTRL_STAT CDBGPRWUPREQ
| DP_CTRL_STAT_CDBGRSTREQ);
}

*

LOG_EXIT(result);
return result;

Programming specification 71 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.9 ROM Boot status checking and polling

10.9.1 CheckIDLE

/**

* Check if device is in IDLE or DEAD branches, what is sufficient condition
* for programming
%
* Return value
* >= @ O0.K.
* < © Error
*/
static int CheckIDLE(uint8_t apNum, uint32_t timeout) {
LOG_ENTRY();

(void)apNum;
int result;
uint32_t v;

if (!(ACQUIRE_METHOD ALLOWED & ACQUIRE_CHECK_IDLE)) {
return RESULT_ERR;

result = DAP_HandshakeAndInit(apNum);
if (FAILED(result)) {
return RESULT_ERR;

/* Read BOOT_STATUS_ADDR register and check boot status, if it indicating IDLE branch then
now additional steps needed*/
result = ReadMem(AP_TO_USE, BOOT_STATUS_ADDR, &v);
if (SUCCEEDED(result)) {
if (v == CYBOOT_NEXT_APP_LAUNCHED) {
/* User application launched, test mode acquisition failed*/
return RESULT_ERR;
} else if (v == CYBOOT_IDLE_BRANCH_REACHED) {
/* Test mode succeded*/
result = RESULT_OK;
} else if (isDEADbranch(v)) {
/* Dead branch, device acquired*/
result = RESULT_OK;
} else {
/* Possibly, corrupted state*/
result = RESULT_ERR;

LOG_EXIT(result);
return result;

Programming specification 72 002-38998 Rev. *C
2025-01-13

* .
PSOC™ Control C3 MCU Infineon
Programming specification

10 Appendix D: Code example

10.10 Acquisition helper functions

10.10.1 AcquireTestMode

/**

* Performs device acquisition in test mode:

* 1. Pre-reset (do hardware (XRES) and connect to the DAP

* 2. Set TEST_MODE bit in TST_MODE SRSS register

* 3. Poll for the LISTEN WINDOW status in a BOOT_STATUS_ADDR register
4. Prepares target for debug

* Return value

* >= 0 O0.K.

* < © Error

*/

static int AcquireTestMode(uint8_t rstType, uint8_t apNum) {
LOG_ENTRY();

int result;
uint32_t v;

WriteMem(AP_SYS, BOOT_STATUS_ADDR, @);
/* 1. Pre-reset (do hardware (XRES) and connect to the DAP

* a. Do hardware (XRES) reset. It is critical for Test Mode acquisition,

* so stop in case of failure.

* b. Handshake (wait for debug interface to become enabled after device reset), initialize
the

* Debug Port, and select the appropriate Access Port (AP) */

result = Reset(rstType, apNum);

if (SUCCEEDED(result)) {

result = DAP_HandshakeAndInit(apNum);

/* 2. Set TEST_MODE bit in TST_MODE SRSS register

if (SUCCEEDED(result)) {
result = WriteMem(apNum, SRSS_TST_MODE, SRSS_TST_MODE_TEST_MODE);
/* Read RDBUFF to make sure that the last AP write actually happens as SW-DP may buffer/
delay it
* until next DAP access*/
ReadDAP (DP_REG_RDBUFF, ACC_DP, &v);

/* 3. Poll for the IDLE status set by boot code and check PC points to address in ROM*/
if (SUCCEEDED(result)) {
result = IsTestModelLaunched(TIMEOUT_BOOT_END);

/* 4. Prepares target for debug

Programming specification 73 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

* a. Clear TEST_MODE bit in SRSS->TST_MODE.TEST_MODE register

* b. Set SP and PC values from the vector table. Needs to be done after Test mode
acquisition to

* withdraw target from IDLE loop Otherwise, such commands as "go" or "step" will not work
after

* acquisition */

if (SUCCEEDED(result)) {

result = WriteMem(AP_SYS, SRSS_TST_MODE, 0);

LOG_EXIT(result);
return result;

/**

* Waits for the device to be in IDLE or DEAD branches
*
* Return value
* >= 0 0.K.
* < © Error
*/
static int IsTestModelLaunched(int timeout) {
int result;
int t;
int tDelta;
uint32_t v;
tDelta = -1;

LOG_ENTRY();

t = SysGetTimeMs();
do {
/* Sleep between polling - let the target do its job and avoid too much garbage on SWD */
SysSleepMs(10);
result = ReadMem(AP_SYS, BOOT_STATUS_ADDR, &v);
if (SUCCEEDED(result) && ((v == CYBOOT_IDLE_BRANCH_REACHED)
|| isDEADbranch(v))) {
/* Device acquired in test mode or Dead branch,
thats ok as device acquired in both cases*/
result = RESULT_OK;
break;

tDelta = SysGetTimeMs() - t;
result = RESULT_ERR;
} while (tDelta < timeout);

/*Check for later if some staff need to be done with vector table*/

LOG_EXIT(result);
return result;

Programming specification 74 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

10.10.2 AcquireVectorCatch

/**

*

Performs target acquisition using Vector Catch:

1. Pre-reset (do hardware (XRES) or one of the software reset) and connect to the DAP
2. Halt CPU, set DEMCR->VC_CORERESET, and issue software reset

3. Connect to the DAP and check CPU is halted

* ¥ ¥ %

*

Return value
* >= 0 0.K.

* < © Error

*/
static int AcquireVectorCatch(uint8_t rstType, uint8_t apNum)
{

LOG_ENTRY();
int result;
int resultTmp;
uint32_t v;
uint32_t vi;

/* 1. Pre-reset and connect
*

a. Pre-reset (do hardware (XRES) or one of the software reset) and connect to the DAP
Pre-reset is not critical for the Vector Catch acquisition,
so do not check for the result and do not stop if it is failed
b. Handshake (wait for debug interface to become enabled after device reset),
initialize the Debug Port and select appropriate Access Port (AP) with the CPU access*/
if (apNum == AP_SYS) {
/* It is not possible to handle CPU state (e.g. breakpoints) via the System Access Port */
result = RESULT_ERR;
} else {
Reset(rstType, apNum);
result = DAP_HandshakeAndInit(apNum);
if (SUCCEEDED(result)) {
/* Update Current Domain Secure */
result = ReadAndInitSecure();

* ¥ ¥ ¥

*

/* 2. Halt CPU, set DEMCR->VC_CORERESET and issue software reset
* a. Enable debug and halt CPU as quickly as possible right after Reset+Handshake+InitDAP
* It is not mandatory to do this quickly, but there is a good chance to stop
* in Listen window or at least prevent user application from doing too much "bad" stuff
* b. Set VC_CORERESET and TRCENA bits in DEMCR register
* c. Issue software reset*/
if (SUCCEEDED(result)) {
result = HaltCPU();
if (SUCCEEDED(result)) {
/* Set VC_CORERESET and TRCENA: DEMCR (OxE@OOEDFC) = 0x01000001 */
result = WriteMem(apNum, DEMCR_ADDR, DEMCR_TRCENA | DEMCR_VC_CORERESET);
if (SUCCEEDED(result)) {
result = Reset(rstType, apNum);

Programming specification 75 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

/* 3. Connect to the DAP and check CPU is halted

* a. Handshake and initialize the Debug Port
* b. Verify reset indeed occurred and CPU is halted in debug mode
* ¢. Verify CPU is halted and in debug mode.
* It must be verified in separate step after the reset confirmation to avoid raise
conditions.
* d. Clear VC_CORERESET, but leave TRCENA bit enabled. Do it even in failed scenario */
if (SUCCEEDED(result)) {
result = DAP_HandshakeAndInit(apNum);
if (SUCCEEDED(result)) {
\Y = DHCSR_S_RESET_ST;
result = PollMem(DHCSR_ADDR, v, ©, v, TIMEOUT_LISTEN_WND, 1, &v1);
if (SUCCEEDED(result)) {
v = DHCSR_S_HALT | DHCSR_C_DEBUGEN;
result = PollMem(DHCSR_ADDR, v, @, v, TIMEOUT LISTEN WND, 1, &v1);

}
resultTmp = WriteMem(AP_CM33, DEMCR_ADDR, DEMCR_TRCENA); // DEMCR (©xE@@OEDFC) <- TRCENA

if (FAILED(resultTmp) && SUCCEEDED(result)) {
result = RESULT_ERR;

LOG_EXIT(result);
return result;

Programming specification 76 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU im eon

Programming specification

10 Appendix D: Code example

10.11 Acquisition function

10.11.1 Acquire

/**

* performs a variety of Psoc C3 chip acquisition attempts:

* 1., Check if the device is already in IDLE or DEAD branches

* 2. Try to acquire in Test mode (TM). This is recommended and the only 100% reliable method.
But

* it will not work if debugger cannot meet timing requirements or Listen window is disabled.

* 3, Try to acquire using the vactor catch acquisition

*

* | Note that XRES connection is strongly required for the hardware reset. Otherwise, neither
of

* the above methods will work if the firmware does "bad" things such as:

* - Repurposes the debug pins (intentionally or unintentionally)

* - Disables/Protects access ports and the Listen window is turned off or too short

* - Intentionally or unintentionally corrupts values in MMIO registers and the Listen window
is

* turned off or too short In this case, there is no way for the debugger to establish even
basic

* communication with the target
*

* Return value

* >= 0 O0.K.

* < © Error

*/

int Acquire(uint8_t *apNum) {
LOG_ENTRY();

int result;

uint32_t v;

uint32_t vi;

uint8_t acqMethods;

result = RESULT_ERR;

acgMethods = ACQUIRE_METHOD_ALLOWED;

/* SysAP should always use Secure Access */
if (*apNum == @)
_DOMAIN_SECURE = 1;

if (acgMethods == 9) {
/* Just init DAP if all acquisition methods are disabled */
result = DAP_HandshakeAndInit(*apNum);

/* 1. Check whether the device is already in IDLE or DEAD branch, what is sufficient
condition for
* programming, so Reset/Acquire is not needed.*/
if ((acqMethods & ACQUIRE_CHECK_IDLE) != @) {
result = DAP_HandshakeAndInit(*apNum);
if (SUCCEEDED(result)) {

Programming specification 7 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

result = CheckIDLE(*apNum, TIMEOUT_BOOT_END);

/* 2. Try to acquire in Test mode (TM) */
if (FAILED(result) && (result != RESULT_ERR_CRITICAL) && ((acgMethods & ACQUIRE_TEST_MODE) !=

9)) {
result = AcquireTestMode(RST_TYPE_HARD & RST_TYPES_ALLOWED, *apNum);

/* 3. Try to acquire using the Vector Catch */
if (((acgMethods & ACQUIRE_VECTOR_CATCH) != @) && (result != RESULT_OK)) {

/* If SYS-AP is not strictly preferred, try to find first available AP with CPU access */
if (*apNum == AP_SYS) {
if (AP_TO_USE_STRICT != @) {
result = RESULT_ERR;
} else {
result = DAP_ScanAP(&vl);
if (SUCCEEDED(result)) {
*apNum = v1;

if (SUCCEEDED(result)) {
result = AcquireVectorCatch(RST_TYPE_HARD & RST_TYPES_ALLOWED, *apNum);
if (FAILED(result)) {
result = AcquireVectorCatch(RST_TYPE_SOFT & RST_TYPES_ALLOWED, *apNum);

LOG_EXIT(result);
return result;

Programming specification 78 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control C3 MCU Infineon
Programming specification

10 Appendix D: Code example

10.12 Unlocking access to the CPU, helper functions

10.12.1 WaitForWFAMode

/**

* Polls the target (with given timeout) waiting for WFA mode to be entered
*

* Return value

* >= 0 0.K.

* < © Error

*/

static int WaitForWFAMode(int timeout)

{
LOG_ENTRY();

int result = RESULT_ERR;
int t;

int tDelta;

uint32_t v;

t = SysGetTimeMs();

do {
/* Sleep between polling - let the target do its job and avoid too much garbage on SWD */
SysSleepMs(10);

/* Read BOOT_DLM_CTL register and check the WFA bit is set, indicating a WFA mode */
result = ReadMem(AP_SYS, BOOT_DLM_CTL, &v);
if (SUCCEEDED(result)) {
if ((v & BOOT_DLM_CTL_WFA_MASK) != @) {
/* WFA branch reached */
result = RESULT_OK;
break;

tDelta = SysGetTimeMs() - t;
} while (tDelta < timeout);

LOG_EXIT(result);
return result;

Programming specification 79 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

10.12.2 AcquireiInWFAMode

infineon

/**

* Acquires the target in WFA mode using specified request code
*
* Return value
* >= 0 0.K.
* < © Error
*/
static int AcquireInWFAMode(uint32_t req) {
LOG_ENTRY();
int result;

result = WriteMem(AP_SYS, BOOT_DLM_CTL, req);

if (SUCCEEDED(result)) {
/* This write triggers soft-reset causing transaction failure, ignore the error */
WriteMem(AP_SYS, RES_SOFT_CTL, RES_SOFT_CTL_TRIG_SOFT);

result = DAP_HandshakeAndInit(@);
if (SUCCEEDED(result)) {
result = WaitForWFAMode (TIMEOUT_BOOT_END);

}
LOG_EXIT(result);

return result;

Programming specification 80

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

10.12.3 LoadDebugCert

infineon

/**

* Reads the debug certificate and loads it to the RAM into DEBUG_CERT_ADDR,
* DEBUG_CERT_ADDR is written to BOOT_DLM_CTL_2
* Return value
* >= 0 0.K.
* < © Error
*/
static int LoadDebugCert(const char *cert_path) {
LOG_ENTRY();

int result RESULT_OK;
size_t num_reads = 0;
uint32_t cert_buffer[DEBUG_CERT_SIZE / 4];

if (cert_path == NULL)
cert_path = "debug_cert/debug_cert_oem.bin";

struct stat s;

result = stat(cert_path, &s);

if (result) {
log_write("Failed to read the Debug Certificate '%s'", cert_path);
result = RESULT_ERR_CRITICAL;

if (SUCCEEDED(result) && s.st_size != DEBUG_CERT_SIZE) {
log_write("Debug Certificate size mismatch");
result = RESULT_ERR_CRITICAL;

/* Let BootROM know the address to seek debug token there*/
result = WriteMem(AP_SYS, BOOT_DLM_CTL_2, DEBUG_CERT_ADDR);
if (FAILED(result)) {

return result;

if (SUCCEEDED(result)) {
FILE *f = fopen(cert_path, "rb");
if (f) {
num_reads = fread(cert_buffer, 1, sizeof(cert_buffer), f);

if (num_reads != sizeof(cert_buffer))
result = RESULT_ERR_CRITICAL;

fclose(f);

if (SUCCEEDED(result)) {
for (uint32_t i = @; i < DEBUG_CERT_SIZE / 4; i++) {
/* Write certificate to SRAM */
result = WriteMem(AP_SYS, DEBUG_CERT_ADDR + (i * 4), cert_buffer[i]);
if (FAILED(result)) {
break;

Programming specification 81

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

LOG_EXIT(result);
return result;

}

(infineon

Programming specification

82

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

10.12.4 StartWFARequest

/**

* Executes WFA request. Target must be acquired in WFA mode before
* calling this function.
* Function check status of debug token verification and checks if cm33 was enabled
*
* Return value
* >= 0 O0.K.
* < © Error
*/
static int StartWFARequest(uint8_t *apNum) {
LOG_ENTRY();

int result;
int status;
int t;

int tDelta;

/* Write dummy status */
WriteMem(AP_SYS, BOOT_DLM_STATUS, ©x11223344);

/* This write triggers soft-reset causing transaction failure, ignore the error */
WriteMem(AP_SYS, BOOT_DLM_CTL, WFA_REQUEST DEBUG_CERT);

/* Wait some time until check*/
SysSleepMs(1000) ;

/* Poll status on accepting debug cerificate via SYS-AP s*/
t = SysGetTimeMs();
do {
SysSleepMs(10);
result = ReadMem(AP_SYS, BOOT_DLM_STATUS, &status);
if (SUCCEEDED(result) && (status == DEBUG_CER_VERIFICATION_SUCCESS)) {
/* debug certificate passed */
/* Scan the Access Ports for the first available with CPU registers access */
result = DAP_ScanAP(apNum);
if (SUCCEEDED(result)) {
/* cm33 enabled*/
break;
}
} else if (SUCCEEDED(result) && (status == CYBOOT_DEBUG_TOKEN_FAILED)) {
result = RESULT_ERR;
LOG_EXIT(result);
return result;

}
} while (tDelta < TIMEOUT_BOOT END);

LOG_EXIT(result);
return result;

Programming specification 83 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

10.13 Unlocking access to the CPU

10.13.1 UnlockCPUAccess

/**

* Unlocks the access to the CPU using given debug certificate.

* CPU is left running after calling this function. The following

* steps are performed:

* 1. Target is acquired in WFA mode with request WFA_REQUEST_DEBUG_CERT

* 2. Debug certificate is loaded into RAM

* 3, WFA request WFA_REQUEST_DEBUG_CERT is executed, this will enable CM33 AP

* Return value

* >= 0 O0.K.

* < © Error

*/

int UnlockCPUAccess(uint8_t apNum, const char *cert_path) {
LOG_ENTRY();

int result;

result = DAP_HandshakeAndInit(@);

if (SUCCEEDED(result))
/* Sets WFA request and waits for acknowledgment from bootROM */
result = AcquireInWFAMode(WFA_REQUEST_DEBUG_CERT);

if (SUCCEEDED(result))
/* Load debug token and address of token*/
result = LoadDebugCert(cert_path);

if (SUCCEEDED(result))
/* Set request to check certificate and check return status and if cpu enabled*/
result = StartWFARequest(&apNum);

LOG_EXIT(result);
return result;

Programming specification 84 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

10.14 Flash programming

10.14.1 SROM APIs description

/* Main SROM APIs are the following:

cyboot_flash_write_row - performs write operation

cyboot_flash_program_row - performs program operation

cyboot_flash_erase_row - performs erase operation

> flash_context_t ctx - flash context (for blocking operation all fields must be zero),
> *ctx - points to a RAM memory where flash context located

> *address - flash address that must be erased/programmed/written

> *data - points to RAM address where data for 1 row located (to be written/programmed)
*/

uint32_t cyboot_flash_write_row(uint32_t address, uint8_t* data, flash_context_t* ctx);
uint32_t cyboot_flash_program_row(uint32_t address, uint8_t* data, flash_context_t* ctx);
uint32_t cyboot_flash_erase_row(uint32_t address, flash_context_t* ctx);

typedef void (*cyboot_flash_callback_t)(void * ctx);

typedef struct

{
uint32_t min_count;
uint32_t max_count;
uint32_t min_page_addr;
uint32_t scratch_row_idx;

} cyboot_flash_refresh_t;

typedef struct

{

/*
* [@] @ -BLOCKING, 1-NON-BLOCKING
* [1] RWW or STALL_READ, for BLOCKING
* [2] REFRESH_CTL, determines who provides the data for Column 33.
* @- Flash API computes the data for column 33.
* 1- column 33 is programmed as is. Up to a caller to provide the data.
* [3] A mode for Program Sector and Program Bulk operations.
* 0- ALL
* 1- Even/0dd
*/
uint32_t flags;
uint32_t hv_params_addr;
cyboot_flash_refresh_t *refresh;
/* params for non-blocking operations */
cyboot_flash_callback_t callback_pre_irq;
cyboot_flash_callback_t callback_post_irq;
cyboot_flash_callback_t callback_complete;
uint32_t callback_param;
uint32_t state; /* A state machine - EMPTY, ERASE_O, PROGRAM_O, WRITE_0,1 */
uint32_t flash_addr; /* Non-blocking WriteRow */
uint32_t data_addr; /* Non-blocking WriteRow */

Programming specification 85 002-38998 Rev. *C

2025-01-13

PSOC™ Control C3 MCU iﬂln eon

Programming specification

10 Appendix D: Code example

uint32_t reserved[2]; /* size to be 8 bytes aligned */
} flash_context_t;

002-38998 Rev. *C

Programming specification 86
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

10.14.2 Erase APl usage pseudocode

infineon

/* Code snippet shows how to utilize ERASE SROM API
by setting CM33 core registers and proposes addresses
in RAM to be given for parameters
*/
#define ERASE_CTX_OFFSET SRAM_S BASE
#define ERASE_BKPT_OFFSET (ERASE_CTX_OFFSET + sizeof(flash_context_t))
/**
* Function erases size bytes starting from start_address
*/
bool erase_flash(uint32_t start_address, uint32_t size)
{
uint32_t erase_func_ptr;
uint32_t bkpt_offs = ERASE_CTX_OFFSET + sizeof(flash_context_t);
uint32_t bkpt = DUAL_BKPT_INSTR;
uint32_t size_erased = 0;
flash_context_t ctx = {0};
bool ret;

/* Get erase function pointer*/
ReadMem(AP_CM33, SROMAPI_ERASE_ROW, &erase_func_ptr);

/* Write necessary data to RAM: flash context, bkpt*/

uint32_t* p = &ctx;

for (int i = @; i < sizeof(flash_context_t); ++i) {
/* Dereference pointer and write word to RAM */
uint32_t word = *p++;
WriteMem(AP_CM33, ERASE_CTX_OFFSET, word);

WriteMem(AP_CM33, ERASE_BKPT_OFFSET, bkpt);

/* Write Core registers*/
WriteCoreReg(SP, SRAM_S BASE + 0x400);
WriteCoreReg(R1, ERASE_CTX_OFFSET);
WriteCoreReg(LR, ERASE_BKPT_OFFSET | 1u);

for (int i = start_address; size_erased <= size; i += ROW_SIZE) {
WriteCoreReg(RO, i);
WriteCoreReg(PC, erase_func_ptr);
/* Blocks until returns*/
ret = run_algorithm();
if (ret) {
/*error*/
return false;
¥
size_erased += ROW_SIZE;

}

/* Success*/

return true;

Programming specification 87

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

10.14.3 Program APl usage pseudocode

infineon

/* Code snippet shows how to utilize PROGRAM SROM API
by setting CM33 core registers and proposes addresses
in RAM to be given for parameters
*/
#define PROGRAM_CTX_OFFSET SRAM_S_BASE
#define PROGRAM_BKPT_OFFSET (PROGRAM_CTX_OFFSET + sizeof(flash_context_t))
#tdefine PROGRAM_DATA_OFFSET (PROGRAM_CTX_OFFSET + sizeof(flash_context_t) + 4)
/**
* Function programs size bytes from *buffer starting from start_address
> buffer - pointer to data to be written to flash
> size of buffer
> starting address of flash
*/
bool program_flash(uint32_t start_address, const uint8_t *buffer,uint32_t size)
{
uint32_t program_func_ptr;
uint32_t bkpt_offs = PROGRAM_CTX_OFFSET + sizeof(flash_context_t);
uint32_t bkpt = DUAL_BKPT_INSTR;
uint32_t size_programmed = 9;
uint8_t* pBuffer = buffer;
flash_context_t ctx = {0};
bool ret;

/* Get erase function pointer*/
ReadMem(AP_CM33, SROMAPI_PROGRAM_ROW, &program_func_ptr);

/* Write necessary data to RAM: flash context, bkpt, data buffer*/
uint32_t* p = &ctx;
for (int i = @; i < sizeof(flash_context_t); ++i) {

/* Dereference pointer and write word to RAM */

uint32_t word = *p++;

WriteMem(AP_CM33, PROGRAM_CTX_OFFSET, word);

WriteMem(AP_CM33, PROGRAM_BKPT_OFFSET, bkpt);

/* Write first row with ROW_SIZE to RAM */

uint32_t* pData = buffer;

uint32_t data_ofs = PROGRAM_DATA OFFSET;

for (int i = @; i < ROW_SIZE; i += 4) {
uint32_t word = *pData++;
WriteMem(AP_CM33, data_ofs, word);
data_ofs += sizeof(uint32_t);

}
pBuffer += ROW_SIZE;

/* Write Core registers*/

WriteCoreReg(SP, SRAM_S_BASE + 0x400);
WriteCoreReg(R1, PROGRAM_CTX_OFFSET);
WriteCoreReg(R2, PROGRAM_DATA_OFFSET);
WriteCoreReg(LR, PROGRAM BKPT OFFSET | 1u);

Programming specification 88

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU
Programming specification

10 Appendix D: Code example

for (int i = start_address; size_programmed <= size; i += ROW_SIZE) {
/* write next flash address as a destination*/
WriteCoreReg(RO, i);
WriteCoreReg(PC, program_func_ptr);
/* Blocks until returns*/
ret = run_algorithm();
if (ret) {
/*error*/
return false;
}
size_programmed += ROW_SIZE;

/* Update data in data buffer is RAM*/

pData = pBuffer;

data_ofs = PROGRAM_DATA_OFFSET;

for (int i = @; i < ROW_SIZE; i += 4) {
uint32_t word = *pData++;
WriteMem(AP_CM33, data_ofs, word);
data_ofs += sizeof(uint32_t);

}

pBuffer += ROW_SIZE;

/* Success*/
return true;

infineon

Programming specification 89

002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iml eon

Programming specification

10 Appendix D: Code example

10.15 ReadAndInitSecure

/***

* Reads "Debug Security Control and Status Register" (DSCSR)
* and checks "Current Domain Secure" (CDS) bit
*
* Return value
* >= 0 0.K.
* < © Error
*/
int ReadAndInitSecure(void) {
LOG_ENTRY();
int result;
uint32_t v;
_DOMAIN_SECURE = 0;

result = ReadMem(AP_TO_USE, DSCSR_ADDR, &v);
if (SUCCEEDED(result)) {
_DOMAIN_SECURE = v & DSCSR_CDS;
} else {
fprintf(stderr, "Warning, DSCSR register is unaccesible. Assumed Non-secure CDS\n");

if (_DOMAIN_SECURE != @) {
fprintf(stderr, "Current domain secure state: Secure\n");
} else {
fprintf(stderr, "Current domain secure state: Non-secure\n");

/* Read current CSW value */
result = ReadAPv2(AP_TO_USE, APV2_REG_CSW, &v);
if (SUCCEEDED(result)) {
/* Clean PROT bits */
V &= (~AP_CSW_PROT_MSK);
/* Apply proper PROT value */
if (_DOMAIN_SECURE) {
v |= (AP_CSW_PROT_VAL & AP_CSW_PROT_MSK);
} else {
v |= (AP_CSW_PROT_NS_VAL & AP_CSW_PROT_MSK);
}
/* Write back to CSW */
result = WriteAPv2(AP_TO_USE, APV2_REG_CSW, v);
}
LOG_EXIT(result);
return result;

Programming specification 90 002-38998 Rev. *C
2025-01-13

PSOC™ Control C3 MCU iﬁln eon

Programming specification

10 Appendix D: Code example

10.16 Reads MEM-AP register of the APv2 architecture

/***

* Reads MEM-AP register of the APv2 architecture (CoreSight SoC-600)

*

* Return value

* © SUCCEEDED

* 1 FAILED

*/

static int ReadAPv2(uint8_t apNum, uint32_t regOffset, uint32_t *value) {
int result;

uint32_t reg_addr; /* Effective AP's reg addr */
uint32_t select_reg value; /* DP->SELECT value for acces to AP's register with given offset */
uint32_t reg_index; /* Bits[3:2] of the address, that are used to select a specific

register in a bank,
* are provided with APACC transactions */
/* Used as RegIndex in ReadDAP/WriteDAP functions */

reg_addr AP_ADDR[apNum] + regOffset;
select_reg_value = reg_addr & DP_SELECT_MSK;
reg _index = reg_addr & AP_REG_A3A2_MSK;
/* Update DP->SELECT value if needed */
if (select_reg_value != _DP_SELECT_LAST) {

result = WriteDAP(DP_REG_SELECT, ACC_DP, select_reg value);

if (SUCCEEDED(result)) {

_DP_SELECT_LAST = select_reg_value;

}
} else {

result = RESULT_OK;
}
/* Read AP register value */
if (SUCCEEDED(result)) {

result = ReadDAP(reg_index, ACC_AP, value);

return result;

Programming specification 91 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control C3 MCU Infineon
Programming specification

10 Appendix D: Code example

10.17 Writes MEM-AP register of the APv2 architecture

/***

* Writes MEM-AP register of the APv2 architecture (CoreSight SoC-600)

*

* Return value

* © SUCCEEDED

* 1 FAILED

*/

static int WriteAPv2(uint8_t apNum, uint32_t regOffset, uint32_t value) {
int result;

uint32_t reg_addr; /* Effective AP's reg addr */
uint32_t select_reg value; /* DP->SELECT value for acces to AP's register with given offset */
uint32_t reg_index; /* Bits[3:2] of the address, that are used to select a specific

register in a bank,
* are provided with APACC transactions */
/* Used as RegIndex in ReadDAP/WriteDAP functions */

reg_addr AP_ADDR[apNum] + regOffset;
select_reg_value = reg_addr & DP_SELECT_MSK;
reg_index = reg_addr & AP_REG_A3A2_MSK;
/* Update DP->SELECT value if needed */
if (select_reg_value != _DP_SELECT_LAST) {

result = WriteDAP(DP_REG_SELECT, ACC_DP, select_reg value);

if (SUCCEEDED(result)) {

_DP_SELECT_LAST = select_reg_value;

}
} else {

result = RESULT_OK;
}
/* Read AP register value */
if (SUCCEEDED(result)) {

result = WriteDAP(reg_index, ACC_AP, value);

return result;

Programming specification 92 002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

References

References

[1] Arm’ Debug Interface Architecture Specification ADIv6.0
[2] Arm’v8-M Architecture Reference Manual
[3] Arm’ Cortex’-M33 Processor Technical Reference Manual

Programming specification 93 002-38998 Rev. *C
2025-01-13

https://developer.arm.com/documentation/ihi0074/latest/
https://documentation-service.arm.com/static/615c3754e4f35d2484678be7?token=
https://documentation-service.arm.com/static/5f15c42420b7cf4bc5247f3a?token=

PSOC™ Control C3 MCU
Programming specification

Glossary

Glossary

DAP
Debug access port

eFuse
Electronic fuses

JTAG
Joint Test Action Group

SWD
Serial wire debug

SWJ-DP
Serial wire JTAG debug port

TAP
Test access port

Programming specification

9%

infineon

002-38998 Rev. *C
2025-01-13

o~ _.
PSOC™ Control €3 MCU Infineon
Programming specification

Revision history

Revision history

Document Date Description of changes

revision

** 2023-12-22 Initial release.

*A 2024-05-16 Updated the address for the SROM APl in the Internal flash section.
Fixed a typo in the Constants and subroutines used in the acquisition
flow section.

Updated flow of acquiring in WFA mode in the Unlock the access to the
CPU (helper functions) section.

*B 2024-07-25 Added structures cyboot_flash_refresh_t and cyboot_flash_callback_t.
Fixed typos in register addresses related to test mode and WFA
acquisition.

Added DEAD branch macro with several return codes.

Updated Table 2.

Added more details to the flowcharts and updated them according to
Infineon branding guidelines.

Added the missing flowchart to the Step 2 - acquire in test mode
section.

Updated boot timings.
Added security initialization (TrustZone-related feature).
Added more details on pseudocode erase and program flash.

*C 2025-01-13 Changed note in the PSOC™ Control C3 MCU family overview section.
Added a note in the Internal flash section.

Programming specification 95 002-38998 Rev. *C
2025-01-13

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-01-13
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-ryd1698399078812

Important notice

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”).

With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.

In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Programmer
	1.2 PSOC™ Control C3 MCU family overview

	2 Nonvolatile memory subsystem
	2.1 Internal flash
	2.1.1 Dual bank mode

	3 Hex file
	3.1 Organization of the hex file

	4 The protocol stack
	4.1 Communication interface
	4.2 Program and debug interface
	4.2.1 DAP power domain
	4.2.2 SWD/JTAG selection
	4.2.3 Physical layer

	5 Acquisition algorithm
	5.1 Constants and subroutines used in the acquisition flow
	5.2 DAP initialization subroutines
	5.2.1 DAP_Handshake
	5.2.2 DAP_Init
	5.2.3 DAP_ScanAP
	5.2.4 Reset

	5.3 Acquire PSOC™ Control C3 MCU
	5.3.1 Step 1 – check boot IDLE state
	5.3.2 Step 2 – acquire in test mode
	5.3.3 Step 3 – acquire PSOC™ Control C3 MCU using vector catch

	5.4 Unlock the access to the CPU (helper functions)
	5.4.1 WaitForWFAMode
	5.4.2 AcquireInWFAMode
	5.4.3 LoadDebugCert
	5.4.4 StartWFARequest

	5.5 Unlock the access to the CPU using the debug certificate
	5.5.1 UnlockCPUAccess

	6 Using SROM APIs to program/erase flash
	6.1 SROM erases API usage
	6.2 SROM program API usage

	7 Appendix A: Intel hex file format
	8 Appendix B: Serial wire debug (SWD) protocol
	9 Appendix C: Joint Test Action Group (JTAG) protocol
	10 Appendix D: Code example
	10.1 Hardware-specific backend functions
	10.1.1 extern int IsJTAG(void);
	10.1.2 extern int SetXRES(state);
	10.1.3 extern int SetVoltage(voltage);
	10.1.4 extern int SWJSequence(out_bits, num_bits);
	10.1.5 extern int Read/WriteDAP(reg, ap_n_dp, value);
	10.1.6 extern void SysSleepMs(uint32_t msec);
	10.1.7 extern int SysGetTimeMs(void);

	10.2 Constants and static data used in code
	10.2.1 Constants
	10.2.2 Static data

	10.3 Error checking functions
	10.3.1 SUCCEEDED
	10.3.2 FAILED

	10.4 DAP initialization functions
	10.4.1 ClearStickyErrors
	10.4.2 DAP_Handshake
	10.4.3 DAP_Init
	10.4.4 DAP_HandshakeAndInit

	10.5 Memory access and polling functions
	10.5.1 ReadMem
	10.5.2 WriteMem
	10.5.3 PollMem

	10.6 CPU AP lookup
	10.6.1 DAP_ScanAP

	10.7 Arm® Core control and register access functions
	10.7.1 ReadCoreReg
	10.7.2 WriteCoreReg
	10.7.3 HaltCPU
	10.7.4 ResumeCPU

	10.8 System reset
	10.8.1 Reset

	10.9 ROM Boot status checking and polling
	10.9.1 CheckIDLE

	10.10 Acquisition helper functions
	10.10.1 AcquireTestMode
	10.10.2 AcquireVectorCatch

	10.11 Acquisition function
	10.11.1 Acquire

	10.12 Unlocking access to the CPU, helper functions
	10.12.1 WaitForWFAMode
	10.12.2 AcquireInWFAMode
	10.12.3 LoadDebugCert
	10.12.4 StartWFARequest

	10.13 Unlocking access to the CPU
	10.13.1 UnlockCPUAccess

	10.14 Flash programming
	10.14.1 SROM APIs description
	10.14.2 Erase API usage pseudocode
	10.14.3 Program API usage pseudocode

	10.15 ReadAndInitSecure
	10.16 Reads MEM-AP register of the APv2 architecture
	10.17 Writes MEM-AP register of the APv2 architecture

	References
	Glossary
	DAP
	eFuse
	JTAG
	SWD
	SWJ-DP
	TAP

	Revision history
	Disclaimer

