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OVERVIEW 

The PAC52XX family of devices contains a FLASH memory controller that manages access to FLASH 

memory. See the block diagram shown below: 

 

The FLASH memory controller manages FLASH access from the AHB bus (not shown in the diagram 

above). The AHB bus makes requests to FLASH that can come from both SWD as well as the ARM 

Cortex-M0 MCU. 

The FLASH memory controller allows the user to change the FLASH wait states, erase FLASH memory 

segments, performed buffered writes as well as disabling SWD access for secure code protection.  

See the sections later in this document for a description of each of these techniques. 
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SETTING THE FLASH WAIT STATE 

The PAC52XX family of controllers allows the user to have a wide range of clock configurations to 

support the ARM Cortex-M0 MCU as well as all the other system peripherals. 

The FLASH memory on the PAC52XX devices has a maximum clock frequency that is typically lower 

than the HCLK, which clocks the ARM Cortex-M0. In order for FLASH memory to run correctly, it must not 

be clocked above the specified frequency. 

Note that when code is executing from RAM, the same limitation does not exist: RAM can run as fast as 

HCLK may be configured.  

For example, in the PAC5220 device, FLASH memory has an access time of 40ns (25MHz). If the user 

configures HCLK to be higher than 25MHz, then the clock to FLASH memory must be configured such 

that the maximum frequency is 25MHz. 

See the block diagram below for reference. 

 

The FLASH Memory controller is clocked using HCLK (not shown), and there is a block that inserts wait-

states into the clock, so that the memory bus that clocks the FLASH memory is less than or equal to 

25MHz. 

The WaitState block inserts wait states in between HCLK pulses to achieve this goal. The user may insert 

between 0 and 3 wait states for each FLASH access. The default for the PAC52XX is 3 wait states. 

For HCLK values of 25MHz or less, then wait state register may be configured for 0 wait states. 

For HCLK values between 25MHz and 50MHz (the maximum HCLK frequency), the wait state register 

should be configured with at least 1 wait state. 

The wait state register may be written at any time during program execution, but is typically configured at 

initialization. The user may adjust this register via the PAC52XX SDK, or by writing the peripheral 

registers directly.  
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Below are examples that show both firmware techniques. 

Configuration Using the PAC52XX SDK 

To configure the FLASH memory controller for 1 wait state using the PAC52XX SDK, the following code 

may be used: 

#include “pac5xxx_driver_memory.h” 

 

... 

 

pac5xxx_memctl_wait_state(FLASH_WSTATE_25MHZ_LT_HCLK_LTE_50MHZ); 

 

... 

 

Note that the definition for the wait states (FLASH_WSTATE_25MHZ_LT_HCLK_LTE_50MHZ) is in the 

file “pac5xxx_Memory.h”. 

Configuration Using the PAC52XX Peripheral Register Interface 

When configuring the PAC52XX memory controller wait states, the device requires that the FLASHLOCK 

register be written with a special pattern (0x12345678) before the WAITSTATE register is written. This is 

to prevent accidental changing of the behavior of the FLASH memory controller. 

To configure the FLASH memory controller for 0 wait states using the PAC52XX Peripheral Register 

Interface, the following code may be used: 

#include “pac5xxx_Memory.h” 

 

... 

 

PAC5XXX_MEMCTL->FLASHLOCK = FLASH_LOCK_ALLOW_FLASHWSTATE_KEY; // 0x12345678 

PAC5XXX_MEMCTL->FLASHWSTATE.VAL = FLASH_WSTATE_HCLK_LTE_25MHZ;  

 

... 

 

As soon as the wait state register is successfully written, then the FLASH memory controller will begin 

executing with the configured wait states when reading FLASH memory. 
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ERASING AND WRITING FLASH MEMORY 

Some applications need to be able to write FLASH memory during program execution for various tasks. 

One example would be to change persistent application configuration, which changes after the firmware 

has been created. 

The PAC52XX allows users to change the contents of FLASH memory, and this application note 

describes a technique to perform this operation. 

NOTE: FLASH memory has a finite number of write cycles, before it becomes unusable. If the application 

writes FLASH too frequently, then FLASH memory will become unusable and will be unable to execute 

any firmware previously written to FLASH. 

The application designer should take great care to make sure that this operation executes only for 

configuration changes, and not during normal operation. See the data sheet for the PAC52XX device for 

more information. 

Flash Configuration 

When a user builds a program for the PAC52XX device, FLASH memory is used to store the program and 

constant data. In the PAC52XX, FLASH memory begins at address 0. The user program will start at 

address 0. 

The FLASH memory on the PAC52XX has an available FLASH size of 32k. There are 32 1k FLASH 

segments.  

In this example, the user program will start at address 0, and the FLASH configuration data will be stored 

in segment 31 (the last segment). 

 

In the PAC52XX, FLASH memory may be erased one segment at a time. So the minimum amount of 

memory to be erased will be 1k.  
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For this example, the FLASH configuration information will be kept in segment 31. The user must take 

care to make sure the user FLASH program does not get any larger than 31 segments (so it does not 

over-write the FLASH configuration section). 

Writing FLASH Memory 

In order to write a segment of FLASH memory, the memory must first be erased. FLASH has to be erased 

each time before it is written.  One segment at a time may be erased, and the segment size is 1k. So, the 

data to write into FLASH must have its segment erased on 1k boundaries before it may be written. 

In order to erase FLASH segments, or to write data to erased FLASH memory, the CPU must be 

executing instructions out of RAM. You cannot be executing out of FLASH and erasing or writing FLASH 

memory at the same time. 

To instruct the linker to place any function in RAM, you need to do the following. 

CooCox: 

 Define the symbol “GCC” in CoIde 

IAR: 

 Define the symbol “IAR” in IAR Embedded Workbench 

After the tools have had these symbols properly defined, add the following symbol the beginning of the 

function signature in the source file: PAC5XXX_RAMFUNC. This will tell the linker to place this function in 

RAM. 

For example, the following function would be placed in RAM: 

PAC5XXX_RAMFUNC void run_this_from_ram(int i) 

{ 

  // This function running in RAM 

  ;  

} 

 

The API functions in the PAC52XX SDK that configure the memory controller must also let the linker 

know to put these functions in RAM. To do this, the pac5xxx_driver_config.h file must enable the 

PAC5XXX_DRIVER_MEMORY_RAM symbol, as shown below: 
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To write the configuration information to FLASH, be sure to follow the example above in order to make 

sure the calling function resides in RAM. An example function that is called to update the configuration 

information could then look like below. 

// Call this function when user wants to write new config data into FLASH segment 31 
// Be sure to not call frequently. Performing too many writes to FLASH may burn out 
FLASh 
// and it will become unusable 
 
// Also need to make sure that PAC5XXX_DRIVER_MEMORY_RAM symbol in 
pac5xxx_driver_config.h is enabled, to 
// compile the memory controller functions into RAM (needed to update FLASH) 
 
// Note that this function *must* be linked into RAM or this operation will not work 
 
PAC5XXX_RAMFUNC void write_config_area(uint16_t config_1, uint8_t config_2, uint8_t 
config_3) 
{ 
 FlashConfig* fc = (FlashConfig*)FLASH_CONFIG_ADDR; 
 
 // First, erase segment 31 
 
 pac5xxx_memctl_flash_page_erase(31); 
 
 // Wait for erase to complete 
 
 while (pac5xxx_memctl_page_erase_active() != 0); 
 
 // Prepare to write to erased FLASH segment 
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 pac5xxx_memctl_flash_write_prep(); 
 
 // Write passed in data to FLASH segment, and write valid key so user knows 
data is good 
 // Hardware will stall each instruction, while write is taking place 
 
 fc->config_1 = config_1; 
 fc->config_2 = config_2; 
 fc->config_3 = config_3; 
 fc->valid_key = VALID_KEY; 
 
 
} 

In this function the first step is to erase the desired FLASH segment by calling the 

pac5xxx_memctl_flash_page_erase(31) function. This will erase FLASH segment 31.  

After calling the function to erase a segment of FLASH, the CPU must wait until the erase is complete 

before beginning to write to FLASH memory. The user may do this by calling the 

pac5xxx_memctl_page_erase_active() function, to test if this operation has completed. 

After the erase is complete, then you must prepare FLASH memory to be written, to try to prohibit 

unwanted writes to FLASH memory by calling the pac5xxx_memctl_flash_write_prep() function. 

After this, you may write any FLASH in the segment you erased one time. You may not re-write any 

FLASH without first erasing the segment as shown above. 

Reading Configuration Information from FLASH 

Once FLASH has been written with configuration information as shown above, the firmware may read the 

contents of it at any time.  

The program above writes a special key into FLASH, to indicate that the FLASH configuration has been 

written. The application firmware may read this key to determine if the contents of FLASH configuration 

are OK, as shown below. 

// Set defaults 
 
uint16_t c1 = 0xFACE; 
uint8_t c2 = 0xAA; 
uint8_t c3 = 0xBB; 
 
int main(void) 
{ 
 FlashConfig *fc = (FlashConfig*)FLASH_CONFIG_ADDR; 
 
 // See if there is a valid key in FLASH, if so load data from FLASH. 
 // If the key is not valid, just use default values 
 
 if (fc->valid_key == VALID_KEY) 
 { 
  c1 = fc->config_1; 
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  c2 = fc->config_2; 
  c3 = fc->config_3; 
 } 
 
 
 while (1); 
 
} 
 

In this function, the user program (which may be in FLASH or RAM) checks to see if the valid key is 

present in configuration FLASH memory. If it is, it uses the configuration values from FLASH. 

If the contents of configuration FLASH are not valid, then the default values can be used, as shown 

above. 
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FLASH BUFFERED WRITES 

The ARM Cortex-M0 may be configured to run at a faster clock frequency than the FLASH memory is 

capable of running at. If the ARM Cortex-M0 writes a location in FLASH memory, then the MCU will stall 

until the operation completes. This prevents the MCU from executing any other instructions until the 

FLASH write operation completes. 

This stall may be unacceptably large, depending on the program requirements. For example, in the 

PAC5220 the FLASH write time is 20s. 

The PAC52XX family of controllers have a feature called “buffered writes” that allow the MCU to post a 

write operation, and regain control over the CPU to execute other instructions while waiting for the write 

operation to complete. 

FLASH Buffered Writes allow the user to post a 16-bit write operation if using this feature. 

To use this feature, the user will need to know the following information: 

 FLASH page containing the data to write 

 Relative memory address of data to write 

Where: 

FLASH page = (Target Address – Page Size [1024]) 

Address = (Target Address – (FLASH page * Page Size [1024])) / 2 

For example, if the user wishes to write the data 0xFEED to the address 0x0000 0438 the values for 

FLASH page and Address would be as follows: 

FLASH page = (0x0000 0438 – 0x400) = 0 

Address = (0x0000 0438 – (0 * 0x400) / 2) = 0x0000 0438 

To execute a buffered write to this address, the user may use either the PAC52XX SDK or PAC52XX 

Peripheral Register Interface. Both types of examples are shown below. 

Buffered Write using PAC52XX SDK 

To write the value 0xFEED to the address 0x000 0438 using Buffered Writes via the PAC52XX SDK, the 

user may use the code shown below. 

Note that the user should first check to make sure there is not an active buffered write (in case this can 

happen), then write the data by calling the following function: 

#include “pac5xxx_driver_memory.h” 

 

... 

 

while (pac5xxx_memctl_buffered_write_active() != 0); 

 

pac5xxx_memctl_buffered_write(0, 0x0438, 0xFEED); 
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Buffered Write using PAC52XX Peripheral Register Interface 

To write the value 0xFEED to the address 0x000 0438 using Buffered Writes via the PAC52XX Peripheral 

Register Interface, the user may use the code shown below. 

Note that the user should first check to make sure there is not an active buffered write (in case this can 

happen), then write the data by the following code: 

#include “pac5xxx_Memory.h” 

 

... 

 

// Test to make sure no buffered write is active 

 

while (PAC5XXX_MEMCTL->FLASHCTL.WRITE != 0); 

 

// Write the FLASH buffered write key, page, address and data 

 

PAC5XXX_MEMCTL->FLASHBWRITE = FLASH_LOCK_ALLOW_BWRITE_KEY; 

PAC5XXX_MEMCTL->FLASHBWRITEDATA.PAGE = 0; 

PAC5XXX_MEMCTL->FLASHBWRITEDATA.ADDRESS = 0x0438; 

PAC5XXX_MEMCTL->FLASHBWRITEDATA.DATA = 0xFEED; 

 

In this example, as soon as the DATA register is written with the value, the write will be posted and the 

MCU will be able to continue executing instructions. 

Before the MCU performs another buffered write to FLASH, it should verify that no write operation is in 

progress by checking the state of the FLASHCTL.WRITE bit, as shown above. 
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SWD DEBUG ACCESS PROTECTION 

The PAC52XX Memory controller also contains a feature that allows the SWD peripheral to be disabled. 

This feature may be used by applications that wish to not allow access to FLASH memory via the SWD 

port, for code protection. 

When this feature is enabled, it activates a FUSE which permanently disables any read or write access to 

the SWD port.  

NOTE:  BE VERY CAREFUL IMPLEMENTING THIS FEATURE, ONCE ENABLED IT IS NOT 

REVERSIBLE. 

To activate this feature, the user must write a special pattern to the FLASHLOCK register (0xF983 62AB) 

and then write a special pattern to the SWDACCESS register to blow the fuse (0x6969). 

Below are examples that show both firmware techniques. 

SWD Debug Access Protection Code 

The user may only activate this feature via the PAC52XX peripheral registers directly.  

To activate SWD Debug Access Protection, the following code may be used: 

#include “pac5xxx_Memory.h” 

 

... 

 

PAC5XXX_MEMCTL->FLASHLOCK = 0xF98362AB; 

PAC5XXX_MEMCTL->FLASHWSTATE.VAL = 0x6969; 

 

... 

 

As soon as the FLASHWSTATE register is written as shown above, the SWD port will no longer be 

usable for reading or writing. 
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ABOUT ACTIVE-SEMI 

Active-Semi, Inc. headquartered in Dallas, TX is a leading innovative semiconductor company with 

proven power management, analog and mixed-signal products for end-applications that require power 

conversion (AC/DC, DC/DC, DC/AC, PFC, etc.), motor drivers and control and LED drivers and control 

along with ARM microcontroller for system development. 

Active-Semi’s latest family of Power Application Controller (PAC)™ ICs offer high-level of integration with 

32-bit ARM Cortex M0, along with configurable power management peripherals, configurable analog 

front-end with high-precision, high-speed data converters, single-ended and differential PGAs, integrated 

low-voltage and high-voltage gate drives. PAC IC offers unprecedented flexibility and ease in the systems 

design of various end-applications such as Wireless Power Transmitters, Motor drives, UPS, Solar 

Inverters and LED lighting, etc. that require a microcontroller, power conversion, analog sensing, high-

voltage gate drives, open-drain outputs, analog & digital general purpose IO, as well as support for wired 

and wireless communication. More information and samples can be obtained from http://www.active-

semi.com or by emailing marketing@active-semi.com 

Active-Semi shipped its 1 Billionth IC in 2012, and has over 120 in patents awarded and pending 

approval. 
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